
ABSTRACT

REZAEI, ARASH. Fault Resilience for Next Generation HPC Systems. (Under the direction of
Frank Mueller.)

Fault resilience techniques enable application completion with correct results despite the
existence of multiple sources of faults and their possible occurrence in the system. HPC systems
are particularly interesting to study as multiple challenges arise from the size (millions of cores)
and the programming model (tightly coupled). Resilience is considered a major roadblock in
next generation supercomputers due to large systems size and a shorter Mean Time Between
Failure (MTBF). A number of state-of-art resilience methods exist: Checkpoint/Restart (CR),
process migration, redundant computing, and Application Based Fault Tolerance (ABFT). The
aim of this work is to overcome shortcomings that are present in the current software solutions
for resilience in HPC.

In CR, the core idea is to save the state of processes on storage periodically and recover from
failures by reloading a previous checkpoint. Process migration aims at moving away processes
from nodes that are predicted to fail soon. But there are shortcomings in CR and process
migration: No CR approach exist for the Intel Xeon Phi coprocessor, a new architecture that
allows for fast computation through offloading. We provide Snapify, a set of extensions to
Intel software stack that provides three novel features for Xeon Phi applications: CR, process
swapping, and process migration.

Redundant computing aims at providing resilience through launching multiple equivalent
processes to perform the same task (replicas). The intermediate results can be compared among
replicas and soft errors can be detected/corrected. However, current redundancy approaches do
not replenish the failed replicas. We present a redundant execution environment that quickly
repairs failures via DIvergent NOde cloning (DINO). DINO contributes a novel node cloning
service integrated into the MPI runtime system that solves the problem of consolidating divergent
states among replicas on-the-fly.

Finally, as the HPC applications become more complex due to a deep memory hierarchy
and the large scale of systems, we propose end-to-end resilience, which provides a set of APIs
crafted for HPC application developers to express their resilience demands in a modular fashion.
This allows the separation of resilience concerns from algorithmic parts of the computation.
The compiler and the runtime system support the requested resilience techniques seamlessly.
Moreover, end-to-end resilience allows for creating regions with various resilience methods while
protecting the data across regions.
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Chapter 1
Introduction

1.1 High Performance Computing

High Performance Computing (HPC) is a method of computing that utilizes parallel processing
for running applications efficiently, quickly and reliably that would be very time consuming if
executed serially. HPC systems enable the execution of computation-intensive applications on a
large number of high-end processors connected through a fast network interconnect. HPC systems
allow scientists to perform research on climate modeling, protein folding, molecular dynamics,
fluid dynamics, medical imaging, and many more domains. Typically, the performance of HPC
systems is measured through a metric named Floating-Point Operations Per Second (FLOPS).
In scientific calculations, the main focus of HPC, the number of floating point operations best
describes the speed of the system and provides a metric to compare various systems. Table
1.1 shows the top 10 world supercomputers providing petaflops (1015 FLOPS) performance.
The scale of these systems varies from 115K to 3M CPU cores and some of them receive their
performance boost from coprocessors.

Table 1.1: Top 10 supercomputers (top500.org – Last Updated on November 2015 )

Rank Name FLOPS CPU core count Coprocessor
1 Tianhe-2 33.86 peta 3,120K Intel Xeon-Phi
2 Titan 17.59 peta 560K Tesla GPUs
3 Sequoia 17.17 peta 1,572K none
4 K Computer 10.51 peta 705K none
5 Mira 8.58 peta 786K none
6 Trinity 8.1 peta 301K none
7 Piz Daint 6.27 peta 115K Tesla GPUs
8 Hazel Hen 5.64 peta 185K none
9 Shaheen II 5.53 peta 196K none
10 Stampede 5.16 peta 462K Intel Xeon-Phi

1



Coprocessors (or accelerators) are devices designed to further extend the performance of
CPU cores. Computation and data are offloaded onto these devices to leverage the parallel
architecture to execute embarrassingly parallel kernels of computation. Nvidia GPUs and the
Intel Xeon Phi are two examples of such devices that are vastly used in HPC clusters and top
supercomputers alike.

The growth in scale of problems and the demand for models with higher resolution necessitates
the move toward next-generation supercomputers, which will provide exaflops (1018 FLOPS).
The performance gap between current and future supercomputers is three orders of magnitude.
Thus, innovations in all software/hardware components are required to bridge this gap and
conquer the challenges on the path. Table 1.2 shows the Department of Energy (DOE) original
timeline for exascale computing. It shows the specification of a 200 petaflops system that should
have been deployed by 2015 in order to meet the exascale goal by 2018. As the 2015 deadline
was not met, the timeline shifted to a target date of 2020 for exascale. Although the timeline has
shifted, the specification still applies. An exascale system should have a Mean Time To Interrupt
(MTTI) in the order of one day with a total memory size of 32-64 petabytes distributed across
about 100K nodes (10x more memory and 2x more nodes compared to a 200 petaflops system).
Note that the system needs to cope with errors such that the MTTI does not change from 200
petaflops to 1 exaflops (third and forth column). Thus, reliability is a major concern.

Table 1.2: DOE Exascale Timeline

System attributes 2010 “2015” “2018”
System peak FLOPS 2 Peta 200 Peta 1 Exa
Power 6 MW 15 MW 20 MW
System memory 0.3PB 5 PB 32-64PB
Node performance 125 GF 0.5TF or 7 TF 1 TF or 10x
Node memory BW 25GB/s 0.1TB/s or 10x 0.4TB/s or 10x
Node concurrency 12 O(100) O(1k) or 10x
TotalNode Interconn BW 1.5 GB/s 20 GB/s or 10x 200GB/s or 10x
System size (nodes) 18700 50,000 or 1/10x O(100,000) or 1/10 x
MTTI days O(1day) O(1 day)

1.1.1 Exascale Challenges

Fig. 1.1 depicts the challenges in the path toward exascale 1. Failures and their effects on system
performance and correctness are a major roadblock. Node failures could happen due to hardware
or software faults. Hardware faults could be due to aging, power loss, or operation beyond
certain temperature thresholds. Software faults can be due to bit flips due to radiation from

1Image borrowed from http://aics-research.riken.jp/ishikawa_e.html
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space or small fabrication sizes, bugs that seldom materialize, complex software component
interactions, and race conditions that only rare interleaving in the execution of tasks trigger.

The performance and scalability of Input/Output (I/O) subsystems are the second concern.
Persistent storage is usually provided through the file system abstractions. There are dedicated
I/O nodes that provide this service across the whole system. With a larger number of execution
threads in the exascale system, higher load with be put on the I/O subsystem. This could
potentially create a performance bottleneck.

Figure 1.1: Exascale Challenges

The next challenge is power. Current supercomputers consume between 5 to 10 megawatts of
electricity. Just to put it into perspective, this amount of energy is enough to supply thousands
of houses. The electricity bill of HPC systems is a major concern, especially for exascale, and a
growing body of research focuses on analyzing the requirements and proposing new methods for
power savings.

Programibility, heat (cooling), and performance of memory systems are the remaining
challenges. Exascale systems with billions of application threads potentially require innovations
in the programming models such that synchronization, and communication can be performed
with low overheads.

In order to create next-generation HPC systems, the above-mentioned challenges must be
addressed. This work focuses on the first major challenge: reliability and failures.

1.2 Resilience

Resilience aims at keeping applications running so that they produce correct solution in a timely
and efficient manner even in the presence of system degradation and failures. A correct solution
can be achieved only through protecting the application from data corruption and errors. Note
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that degradation and failures include any hardware or software event that impedes application
progress [41].

Fault tolerance aims at recovering from transient faults, masking permanently disabled
components, and allowing applications to make progress even in the presence of failures. Fault
tolerance has a long history in computational systems. Recently, the term fault resilience has
been used to describe novel approaches that tackle challenges in system reliability. This includes
a wide range of approaches from rollback recovery through preserving previous states to forward
recovery via exploiting algorithmic properties for certain types of applications and errors. From
a different perspective, it encompasses reactive methods that are only triggered after observing
errors to proactive methods that utilize preventive actions to survive predicted failures.

In this dissertation, we use fault tolerance and fault resilience synonymously.

1.2.1 Approaches

Multiple methods to address failures are presented in this section.

Checkpoint-based Methods

These methods consider the system as a collection of processes that are communicating over
a network. CR methods periodically take snapshots of the processes related to a job, create a
consistent global state and save it to a persistent storage system. In case of a failure, rollback
recovery reloads the last checkpoint, and the job is restarted. Common approaches mainly use
a single process CR system as the core mechanism and then extend that to a system-wide
CR implementation inside or on the top of a Message Passing Interface (MPI) library. MPI is
a standardized and portable message-passing system designed by researchers from academia
and industry to operate on a wide variety of parallel computing systems. CoCheck [126] is
one of the earliest systems that implements CR on top of Condor [88] for the Parallel Virtual
Machine (PVM) and MPI [62]. Starfish [3] provides automatic recovery in MPI-2 programs
running on a network of workstations. It uses strict atomic group communication protocols to
handle state changes. LAM/MPI [115] and subsequently Open MPI provide CR on the top of
Berkeley Lab Checkpoint/Restart (BLCR) [49], which is a system-level and transparent CR
implementation. BLCR can be used as a standalone system for a single node or as part of
a larger system that runs parallel jobs. One of the challenges related to CR is to choose the
length of a checkpoint interval. A method to calculate the optimal checkpoint interval has been
presented in [40], which minimizes the application runtime considering the overhead of writing
checkpoint files, the time required to restart the application in case of failures, and the time
lost as a result of a failure. Unfortunately, traditional CR-based approaches do not scale well in
terms of performance with increasing job sizes due to I/O contention. Ouyang et al. [100] try
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to improve the performance of checkpointing by aggregating checkpoint writes into a buffer pool
and overlapping the application progress with file writes.

There are two fundamental types of checkpoint protocols: coordinated ones and uncoordinated
ones. While coordinated checkpointing involves collaboration between processes to create a
system-wide consistent state, uncoordinated checkpointing does not impose any restriction on the
checkpoint time. Uncoordinated checkpointing results in less I/O contention but requires message
logging and is subject to the domino effect [105] discussed next. In case of failure recovery,
the inter-process dependencies imposed by message passing may force some of the processes
that did not fail to roll back. Such dependencies can create a chain going all the way back to
job start time since causal dependencies are transitive. This phenomenon is called the domino
effect. Methods based on coordinated checkpointing are not affected by the domino effect since a
globally consistent state is established at the cost of synchronization overhead [25]. Log-based
methods combine checkpointing with logging of all non-deterministic events, which means all
messages in the worst case, due to the domino effect. This results in large amounts of overhead
and requires significant storage to maintain these logs. Considering the size and the induced
overhead of these methods, exascale systems [46] may require uncoordinated checkpointing.

Communication-Induced Checkpointing [4] provides uncoordinated checkpointing without
the domino effect. However, their work shows that the approach provides good performance only
under a low communication load and it does not scale well with larger numbers of processes.
Guermouche et al. [64] address the same problem for send deterministic MPI applications. A
given MPI application is said to be send deterministic, if, for a set of input parameters, the
sequence of sent messages, for any process, is the same in any correct execution [28]. Focusing on
applications with this property, they provide a protocol that needs to log only a small subset of
the application messages. They also provided an implementation in MPICH2 with experimental
results showing low overhead.

Multiple attempts have been made to improve the scalability and overhead of CR methods.
Ropars et al. [110] combine a hierarchical coordinated checkpointing and message logging. They
exploit a property called “channel-determinism” that exist in some HPC applications. It states
that for a given set of input parameters the sequence of messages sent on communication channels
is the same in any valid execution. With channel-determinism, recovery can be performed based
on a partial order of events. Their results with 512 MPI ranks show a recovery time of only few
seconds. Riesen et al. [109] combine coordinated checkpointing with optimistic message logging
and use a protocol that glues them together. This combination eliminates some of the drawbacks
of each individual approach. They show the applicability of their approach through simulation.

Sato et al. [117] use a combination of non-blocking and multi-level checkpointing. The
main idea is to deploy agents on extra nodes (e.g., I/O nodes) to asynchronously transfer
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checkpoint files to the Parallel File System (PFS). Using dedicated nodes to create checkpoints
gives compute nodes the opportunity to continue their execution.

There are also log-based methods with different policies including optimistic logging [79],
casual logging (Manetho [53]), and pessimistic logging (MPI/FT [13] and MPICH-V [19]).

Redundancy

Redundancy improves the reliability of systems by performing the same task multiple times.
Dual Modular Redundancy (DMR) allows for detecting errors through comparison while Triple
Modular Redundancy (TMR) can further correct the error of a single duplicate task via voting
[89].

rMPI [22] is a library that provides transparent redundant computing. rMPI is implemented
using PMPI, the profiling layer of MPI. It supports a large subset of MPI communication
API calls and relies on the MPI library to implement collective operations. MR-MPI [55]
supports partial and full replication and also uses PMPI to intercept MPI calls. Elliott et al.
[51] determine the best configuration of a combined approach including redundancy and CR.
They propose a cost model to capture the effect of redundancy on the execution time and
checkpoint interval. Their result shows the superiority of full redundancy over partial redundancy
in terms of execution time and specifically dual redundancy. Ferreira et al. [58] investigate the
feasibility of process replication for exascale computing. A combination of modeling, empirical,
and simulation experiments are presented in this work. The authors show that replication
outperforms traditional CR approaches over a wide range of points in the exascale system design
space.

RedMPI [59] allows the execution of MPI applications in a redundant fashion. Each process is
replicated r times for a redundancy degree of r. Point-to-point messages and collective operations
are performed within each replica set (original nodes and shadow nodes for r = 2, or a second
shadow node set for r = 3). Under dual redundancy, an application with originally N processes
now creates twice the number of MPI processes (2N). The native rank is the rank assigned by
mpirun within the range [0...2N − 1]. The rank API call, MPI_Comm_Rank, returns the virtual
rank. The MPI processes of each replica sphere, so-called replica ranks, are numbered [0...r − 1].
Fig. 1.2 depicts a dual redundant job and introduces the terminology for virtual, native, and
replica ranks, where a virtual rank with its two boxes represents a sphere. The native ranks
(assigned by mpirun) are in the range of 0 to 7. Only virtual ranks are visible to the application
(in the range of 0 to 3). RedMPI supports SDC detection and correction through comparing
the exchanged messages. It can be configured to utilize one of the following protocols: Basic,
Message-plus-hash, and All-to-all. In the Basic protocol, no SDC detection/correction is provided.
In Message-plus-hash, a message and a hash are sent to different endpoints and endpoints can
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check a received hash against the corresponding received message. In All-to-all, messages are
sent/received by all replicas in a sphere. E.g., for r = 2, a send becomes two sends and a receive
becomes two receives. Message-plus-hash has superior performance over All-to-all since fewer
and shorter messages are exchanged.

 

Native Rank: 0         Replica Rank: 0 

Native Rank: 4         Replica Rank: 1 

Native Rank: 1         Replica Rank: 0 

Native Rank: 5         Replica Rank: 1 

Native Rank: 2         Replica Rank: 0 

Native Rank: 6         Replica Rank: 1 

Native Rank: 3         Replica Rank: 0 

Native Rank: 7         Replica Rank: 1 

Virtual Rank 0 

Virtual Rank 1 

Virtual Rank 2 

Virtual Rank 3 

Figure 1.2: Dual Redundancy for a job with 4 tasks

Migration

A process-level proactive live migration approach is presented by Wang et al. [131]. It includes
live migration support realized within BLCR, combined with an integration within LAM/MPI.
Their experimental results show low overhead. They also compare process-level live migration
against operating system migration running on top of Xen virtualization. Engelmann et al.
[56] propose a framework and architecture for proactive fault tolerance in HPC, including
health monitoring and feedback control-based preventive actuation. This work investigates the
challenges in monitoring, aggregating data and analysis.

Rejuvenation

Three rejuvenation techniques for HPC have been introduced by Naksinehaboon et al. [96]. They
also provide an overhead estimation of using rejuvenation right after taking checkpoints. Based
on their simulation results, they conclude that rejuvenation does not increase the reliability of
HPC systems at all times. Another intuitive result is that the computing time lost in case of
CR with rejuvenation is larger than that when only CR is used.
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1.3 Hypothesis

Checkpoint/Restart, redundancy, and process migration are the common methods for resilience
in today’s high performance computing systems. However, current approaches suffer from the
following shortcomings:

• There is a lack of support for CR and process migration for new architectures such as the
Intel Xeon-Phi.

• State-of-art redundancy-based HPC systems do not repair failed replicas, thus errors may
remain undetected or a job may even fail altogether.

• Developing resilient HPC applications requires considerable effort. Application developers
might need to re-write their application in a specific programming model with GVR,
Charm++ to address soft errors.

Hypothesis: As scalability and soft errors increasingly become challenges, resilience for HPC
systems require novel capabilities that handle checkpointing on accelerators, reduce overhead of
redundant computing, and provide protection spanning across phases of alternating resilience
techniques.

1.4 Contributions

We present solutions for these three key challenges. First, we design and implement Snapify, a
snapshot system (CR, process migration, and swapping) for Intel Xeon-Phi servers. Second, we
design and implement DINO, a system for replenishing failed nodes in redundant computing.
Third, we provide a compiler-based approach to separate resilience concerns from algorithmic
goals in order to provide maximum code modularity with minimum effort by programmers for
implementing resilient HPC applications.

1. Snapify: Intel Xeon Phi coprocessors provide excellent performance acceleration for highly
parallel applications and have been deployed in several top-ranking supercomputers. One
popular approach of programming the Xeon Phi is the offload model, where parallel code
is executed on the Xeon Phi, while the host system executes the sequential code. However,
Xeon Phi’s Many Integrated Core Platform Software Stack (MPSS) lacks fault-tolerance
support for offload applications. We introduce Snapify, a set of extensions to MPSS that
provides three novel features for Xeon Phi offload applications: checkpoint and restart,
process swapping, and process migration. The core technique of Snapify is to take consistent
process snapshots of the communicating offload processes and their host processes. To
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reduce the PCI latency of storing and retrieving process snapshots, Snapify uses a novel
data transfer mechanism based on remote direct memory access (RDMA). Snapify can
be used transparently by single-node and MPI applications, or be triggered directly by
job schedulers through Snapify’s API. Experimental results on OpenMP and MPI offload
applications show that Snapify adds a runtime overhead of at most 5%, and this overhead
is low enough for most use cases in practice.

2. DINO: Redundant computing has been proposed as a solution at extreme scale by
allocating two or more processes to perform the same task. However, current redundant
computing approaches do not repair failed replicas. Thus, correct execution completion is
not guaranteed after a replica failure occurs as a node no longer has a redundant shadow
node. Replicas are logically equivalent, yet may have divergent runtime states during job
execution, which complicates on-the-fly repairs for forward recovery. In this work, we
present a redundant execution environment that quickly repairs hard failures via Divergent
Node cloning (DINO) at the MPI task level. DINO contributes a novel task cloning service
integrated into the MPI runtime system that solves the problem of consolidating divergent
states among replicas on-the-fly. Experimental results indicate that DINO can recover
from failures nearly instantaneously, thus retaining the redundancy level throughout job
execution. The cloning overhead, depending on the process image size and its transfer
rate, ranges from 5.60 to 90.48 seconds. To the best of our knowledge, the design and
implementation for repairing failed replicas in redundant MPI computing is unprecedented.

3. End-to-End Resilience: We propose an infrastructure that allows for computation with
end-to-end resilience that requires minimum programmer effort while providing high code
modularity. As an automatic approach for providing resilience throughout the whole
application execution, our system lifts the burden from the application programmers,
allowing them to focus solely on performance of the computation while resilience means
are embedded into source code via compiler/library enhancements and runtime support.
This work is motivated by the aspect-oriented programming (AOP) paradigm, which aims
to increase modularity by allowing the separation of concerns. AOP includes programming
methods that support the modularization of concerns (goals) at the source code level. We
further define the vulnerability factor as product of the length of a liveness range of a data
structure (in seconds) and the size (in bytes) as a metric that indicates the likelihood for
a soft error (such as bit flips) to occur in this data.
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1.5 Organization

Chapter 2 presents Snapify and our innovations in providing a snapshot service for Xeon Phi
servers. The design, implementation and evaluation of DINO is presented in Chapter 3. End-to-
end resilience provides protection during the whole lifetime of data structures and is presented
in Chapter 4. Chapter 5, summarizes this work and discusses potential future work.
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Chapter 2
Snapify: Capturing Snapshots of Offload
Applications on Xeon Phi Manycore
Processors

2.1 Introduction

A Xeon Phi coprocessor has up to 61 cores, connected by a high-speed on-chip interconnect.
Each core supports four hardware threads, and has a 512-bit wide vector unit to execute SIMD
instructions. The coprocessor has its own physical memory of 8/16GB, which can be accessed
with an aggregate memory bandwidth of 352GB/s. Both the coprocessor and the host system
run their own operating systems. The host system and the coprocessor do not share a common
memory space, and the two are physically connected by the PCIe bus.

Xeon Phi’s software stack (MPSS) supports two programming models. In the offload pro-
gramming model, highly parallel, code segments are executed on Xeon Phi, while the host system
executes the sequential code. On the other hand, the native programming model allows users
to execute their applications entirely on the Xeon Phi coprocessor. MPSS provides high-level
language support and a modified Linux OS on Xeon Phi to facilitate both programming models.
As a result of its performance acceleration for highly parallel applications and ease of program-
ming, Xeon Phi coprocessors have been deployed in HPC systems, including several top-ranking
supercomputers [66].

Using coprocessors like Xeon Phi in HPC systems, however, compounds the problem of the
increasing failure rate due to the system’s growing size and complexity [27]. A recent study on
a GPU-based supercomputer shows a failure rate of 13 hours on average [116]. It is projected
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that the mean time between failure of HPC systems will continue to shrink [27, 118]. Therefore,
programmers must adopt certain fault tolerance mechanism for their applications.

Checkpoint and restart is a fault-tolerance technique widely used in HPC systems. Such a
method periodically takes a snapshot of the application state and saves it on persistent storage. In
case of an error, the application can be restored to a former saved state. The popular checkpoint
and restart tool BLCR provides application-transparent checkpoint and restart support [49]. It
can take a snapshot of the entire process state in both the user and the kernel space, with no
modification to the application code. It has been integrated with MPI to provide distributed
checkpoint and restart for MPI applications running on a cluster [115].

Although Xeon Phi’s software stack is designed to ease the programming effort, its support
of fault tolerance is inadequate. MPSS uses BLCR to support checkpoint and restart of native
applications. BLCR can either save the snapshot of a native process on Xeon Phi to the host’s
file system through Network File System (NFS), or to Xeon Phi’s own local file system. However,
both of these two storage choices have limitations. Saving directly to the host file system through
NFS incurs high data transfer latency on PCIe bus. And because Xeon-Phi does not have any
directly accessible storage and uses a RAM-based file system, a locally saved snapshot on Xeon
Phi’s own file system competes the physical memory space with active processes, including the
native process whose snapshot is to be saved.

A more severe problem is that MPSS has no fault-tolerance support for offload applications.
Given the fact that even a single-node offload application involves the participation of a number
of host and coprocessor processes that use proprietary communication libraries in MPSS to
exchange messages, it is not surprising that none of the existing distributed checkpoint and
restart tools like BLCR or DMTCP [9] can be used. This is because these tools do not consider
the communication between the coprocessor processes and the host processes.

In addition MPSS also lacks sufficient support for process migration among Xeon Phi
coprocessors. When compute nodes are equipped with multiple coprocessors, process migration
can benefit coprocessor load balancing and fault resiliency. For example, a job scheduler may
decide to migrate an offload or native process from a heavily-loaded coprocessor to a lightly-loaded
one to increase job turnaround time [15]. Moreover, by using fault prediction methods [114], it
is possible to avoid imminent coprocessor failures by proactively migrating processes to other
healthy coprocessors.

The limited physical memory on the Xeon Phi coprocessor also restricts the sharing of the
coprocessor among multiple applications. Previous studies have shown that allowing multiple
user applications to share coprocessor like GPU or Xeon Phi can significantly benefit system
utilization and job turnaround time [23, 15, 103, 113]. However, Xeon Phi OS’s own page
swapping mechanism is a poor solution to overcome the capacity limit of Xeon Phi’s physical
memory for multiprocessing. First, as shown by the study in [23], Xeon Phi OS’s swap uses the
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host’s file system as its secondary storage. Swapping in and out memory pages between the
host and the coprocessor incurs high data transfer latency. Second, many offload applications
use pinned memory buffers to allow fast remote direct memory access (RDMA) between the
host and the coprocessor’s memory. Pinned memory pages cannot be swapped out by OS. As a
result, the size of Xeon Phi’s physical memory puts a hard limit on the number of processes
that can concurrently run on the coprocessor.
Contributions. To address these shortcomings of MPSS, we created Snapify, a set of extensions
to MPSS that captures snapshots of offload applications on Xeon Phi. We make the following
specific contributions:

• We propose Snapify, an application-transparent, coordinated approach to take consistent
snapshots of host and coprocessor processes of an offload application. We believe this is
the first proposal that correctly and transparently captures a process-level snapshot of
offload applications on many-core processors like the Xeon Phi.

• We use Snapify to implement three new capabilities for offload applications: application-
transparent checkpoint and restart, process migration, and process swapping. Again, to
the best of our knowledge, this is the first proposal that provides such capabilities for
offload applications on Xeon Phi.

• We propose a fast, remote file access service based on RDMA that speeds up the storage
and retrieval of snapshots (of both offload and native applications) from the host’s file
system.

• We evaluate Snapify on several OpenMP and MPI benchmarks. Our results show that
Snapify imposes negligible overhead in normal execution of offload applications (less than
5%), and the overheads due to the capture of snapshots in checkpoint and restart, process
swap, and process migration are small enough to make it practical to use Snapify for a
variety of offload applications.

This chapter is organized as follows. Section 2.2 gives a concise background of Xeon Phi’s
programming model. Section 2.3 discusses Snapify’s design challenges. Section 2.4 describes
Snapify’s internal design and its API. Section 2.5 shows how Snapify’s API can be used
to implement checkpoint and restart, process swapping, and process migration. Section 2.6
introduces our RDMA-based remote file access service for snapshot storage. Section 2.7 presents
the experimental results. Related work is discussed in Section 2.8. Section 2.9 summerizes our
findings.
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2.2 Background

In this section, we briefly describe the offload programming model and its implementation in
MPSS.

Xeon Phi’s software stack MPSS consists of a hierarchy of runtime libraries that execute on the
host and the coprocessor [71]. These libraries hide complex, low-level communication mechanisms
away and present a simple, high-level offload programming semantics to the programmers. The
software stack also has a modified Linux OS that is run on Xeon Phi. The Xeon Phi OS has its
own file system (built on RAM disk using Xeon Phi’s own physical memory), virtual memory
management, and an optional page-swap mechanism that uses the host’s file system as secondary
storage.

To program an offload application a programmer uses special compiler directives to delineate
regions of code to be executed on Xeon Phi coprocessors. In particular, the pragma “offlaod”
is used to mark an offload region with language-specific scoping constructs (curly braces in
C, and “begin” and “end” in Fortran). In particular, the offload pragma can have additional
data transfer clauses “in” and “out”, specifying the input and output buffers of the offload
region. Input buffers specified in the “in” clauses are transferred from the host memory to the
Xeon Phi coprocessor through the PCIe bus prior to the execution of the offload region, while
output buffers specified in the “out” clauses are transferred back from the Xeon Phi coprocessor
to the host memory following the completion of the offload region. More details of Xeon Phi
programming can be found in [77].

The Xeon Phi compiler generates one binary for the host processor and one binary for the
Xeon Phi coprocessor for an offload application. The host binary is an executable, while the
Xeon Phi binary is a dynamically loadable library. The compiler translates each offload region as
a function to be executed on the Xeon Phi coprocessor and saves the generated code in the Xeon
Phi binary. For each offload region, in the host binary the compiler also generates a function
call to the lower-layer runtime libraries, which coordinate the data transfer between the host
and the Xeon Phi coprocessor and initiate the “remote” procedure call of the offload function.

The execution of an offload application to be accelerated by Xeon Phi coprocessors involves
a minimum of three processes, as reported in Fig. 2.1. The three processes are a host process
(host_proc) running on the host processor, an offload process (offload_proc) running on the
Xeon Phi, and a service named Coprocessor Offload Infrastructure (COI) daemon (coi_daemon),
also running on the Xeon Phi. After a user launches the application (host_proc), the host
process requests the COI daemon to launch a process on the Xeon Phi. Then the host process
copies the Xeon Phi binary to the coprocessor. The binary contains offload functions to be
executed on the coprocessor, and these functions are dynamically loaded into offload_proc’s
memory space. The execution of an offload function is done by a server thread in the offload
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Figure 2.1: The software architecture of host & Xeon Phi.

process. To execute a function, the host process sends a request to the server thread to run the
specified function. Once the function completes on Xeon Phi, the server thread will send the
function’s returned value back to the host process.

Prior to the execution of an offload function the host process also transfers the input data
needed by the offload region to the offload process’s memory space. The host process also receives
data, if any, that is generated by the offload process.

MPSS provides different levels of abstractions to facilitate the communications between the
host process and the processes running on the Xeon Phi. The COI library is an upper level
library offering APIs for a host process to perform process control and remote function calls
on a Xeon Phi coprocessor [70, 71]. It also allows a host process to create buffers, called COI
buffers. The host process can use COI’s API to transfer data between the host process and the
buffers allocated in the offload process. The COI library in turn uses the lower level Symmetric
Communications Interface (SCIF) library to accomplish the real message exchanges and data
transfers between the host process and the offload process [72].

The COI library on the Xeon Phi coprocessor manages the memory space used by COI
buffers. A COI buffer is composed of one or more files that are memory mapped into a contiguous
region. These files are called local store. COI buffers can be created and destroyed through
COI functions, while the files created to be used by COI buffers are persistent until the offload
process terminates.

SCIF provides two types of APIs that allow two processes in different memory space to
communicate. The first type is message-based. The processes use scif_send() and scif_-

receive() to send and receive data. The second type offers remote direct memory access
(RDMA) functions to speed up the data transfer. To use SCIF’s RDMA functions to transfer
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a buffer, a process first registers the buffer’s virtual memory address using scif_register()

function. The function returns an offset address that can be used in SCIF’s RDMA functions:
scif_vreadfrom(), scif_readfrom(), scif_vwriteto(), and scif_writeto(). In fact, the
COI library uses SCIF’s RDMA functions to copy data in COI buffers between the host and
coprocessors.

Each Xeon Phi device runs one COI daemon process to coordinate the execution of offload
processes and the corresponding host processes. The COI daemon maintains SCIF connections
with each active host process that uses COI library to offload part of its computation to Xeon
Phi. The connections are used to communicate the process control messages between host
processes and the COI daemon. For example, the COI daemon launches new offload processes
upon requests from applications on the host. If the host process exits, the daemon will terminate
the offload process and clean up the temporary files used by the offload process.

2.3 Challenges

There are several challenges that must be overcome to capture a process-level snapshot of an
offload application, and subsequently restart the application from the snapshot. These challenges
arise from the distributed nature of an offload application on a Xeon Phi server, and Xeon Phi’s
own software stack. Below we summarize these new challenges.

2.3.1 Capturing consistent, distributed snapshots

Since the execution of an offload application on Xeon Phi involves multiple communicating
processes that do not share memory or a global clock, it is necessary to ensure that the snapshots
of the host and offload processes form a consistent global state [30, 84, 115]. In the simplest case,
an offload application has three processes: a process on the host and two processes (an offload
process, and coi_daemon process) on the Xeon Phi. A global state consists of states of the
three processes, as well as the state of the communication among these processes. A consistent
global state satisfies two properties. First, it is possible to reach this state during the normal
operation of the application. Second, it is possible to correctly restart the processes and resume
the execution of the application. As a counter example, if the host snapshot is taken before the
host process sends a message to the coprocessor, and the snapshot of the offload process is taken
after the receipt of the message, then this pair of snapshots does not form a consistent global
state, and the global state cannot be applied to resume the application. Due to the distributed
nature of Xeon Phi’s offload model, snapshots obtained by just using an existing single-process
checkpoint tool like BLCR [49] or MTCP [108] cannot form a consistent global state.
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The states of communication channels are also part of the global state. Since we cannot take
a snapshot of the physical state of a PCIe bus and the internal hardware state of its controllers,
we must make sure all communication channels between the involved processes are drained
before local snapshots are taken.

2.3.2 Xeon Phi-specific communication libraries

A Xeon Phi offload application uses its own proprietary communication libraries (i.e. COI and
SCIF) for inter-process communication. Therefore, the existing cluster checkpoint tools designed
for applications based on communication libraries like MPI [115] or TCP/IP [75, 111, 9] cannot
be applied to Xeon Phi offload applications.

2.3.3 Dealing with distributed states

The states that are distributed among the processes participating in the execution of an offload
application may get disturbed by the action of taking a snapshot, swapping out, or restarting
the offload process. For example, the COI daemon is responsible for monitoring the status of
both the host and the offload process. If an offload process is terminated due to being swapped
out or being migrated, the coi_daemon will assume that the offload process has crashed and
(incorrectly) mark the process as terminated. On the other hand, when an offload process is
restarted from a snapshot, the coi_daemon needs to be brought into the picture again to monitor
the restarted host and offload process.

2.3.4 Storing and retrieving snapshots

The split of Xeon Phi’s physical memory between the file system and system memory puts a
serious restriction on how the snapshot of an offload process can be stored. A naive solution
that saves a snapshot on Xeon Phi’s local file system cannot be applied to any process, either
native or offload, whose memory footprint exceeds 50% of the Xeon Phi’s physical memory.1

The same restriction also applies when we attempt to restart a process from a snapshot stored
on Xeon Phi’s local file system. Even if the snapshot and the process fit in the Xeon Phi’s
physical memory, the memory used to store the snapshot is unavailable to other offload or native
applications on the Xeon Phi, resulting in a decrease in the number of applications that can
run concurrently or even a crash of some applications due to lack of memory. Therefore, it is
desirable to store and retrieve snapshots from the host’s file system.

1The actual limit is less than half, since the system files and the OS use a small portion of the memory.
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2.3.5 Saving data private to an offload process

A snapshot of an offload process contains the offload process’s own private data. Unlike GPU-
based coprocessor systems, an offload process on Xeon Phi is a full-blown Linux process. The
offload process has host-allocated COI buffers, and its own private data that may not be visible
to the host system (for example, stacks of threads or data regions that are either statically
or dynamically allocated through standard system calls like malloc() by the functions in the
offload process are not visible to the host). The offload-private data may persist across several
offload regions. Therefore, the strategy of only saving the host-controlled memory regions in a
snapshot, as proposed for GPU-accelerated applications in CheCL [128] and CheCUDA [127], is
not suitable for Xeon Phi’s offload applications.

2.4 Snapify

Snapify

host Xeon Phi

SCIF

Snapify

API

Snapify

user application

host process o oad process

le system

MPSS

Snapify-IO Snapify-IO

BLCRCOI COI

Figure 2.2: The architecture of Snapify.

Fig. 2.2 shows the positioning of Snapify technologies in the software stack of the host and
the Xeon Phi. Intel’s MPSS includes COI (which contains the COI daemon) and SCIF. The file
system is part of the Linux OS on the host, and BLCR is the open-source checkpoint and restart
framework. Applications offload computations to the Xeon Phi using the COI library, which has
a component that executes on the host and a component that executes on the Xeon Phi. Key
technologies in Snapify are implemented as modifications to the COI library and the COI daemon,
and as an independent user-level library called Snapify-IO. The implementation does not change
the COI programming interface, and thus is transparent to user applications. Sections 2.4.1,
2.4.2, and 2.4.3 discuss our techniques to create process-level snapshots of the offload application,
restore the execution of the application from a snapshot, and resume the application after a
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typedef struct { char* m_snapshot_path;
sem_t m_sem;
COIProcess* m_process;
}snapify_t;

void snapify_pause(snapify_t* snapshot);

void snapify_capture(snapify_t* snapshot,
bool terminate);

void snapify_wait(snapify_t* snapshot);

void snapify_resume(snapify_t* snapshot);

void snapify_restore(snapify_t* snapshot,
int device);

Table 2.1: Snapify API.

snapshot has been taken, respectively. Snapify-IO, to be described in Section 2.6, is a very
efficient mechanism that we designed to store and retrieve snapshots from the host file system
using SCIF’s RDMA functions.

Snapify provides a simple API that is used to capture snapshots of an offload process and
restore the offload process from snapshots. The API is summarized in Table 2.1. Snapify’s API
defines a C structure and five functions. The functions are called by a host process to capture
a snapshot of the offload process (snapify_pause() and snapify_capture()), to resume the
communication and the partially-blocked execution of the host process and the offload process
after a snapshot is taken (snapify_resume()), to restore an offload process from a snapshot
(snapify_restore()), and to wait for a non-blocking API function to complete (snapify_-

wait()). All functions except snapify_capture() are blocking calls. The structure is used to
pass parameters and to receive results of the functions. The API functions are detailed in the
rest of this section.

2.4.1 Taking Snapshots

Taking a snapshot of an offload process involves the host process on the host and the COI daemon
and the offload process on each of the coprocessors installed in a Xeon Phi server. Although our
approach handles multiple Xeon Phi coproessors in a server, for simplicity we assume there is
only one Xeon Phi coprocessor in the following discussions. Therefore, we consider the case of
three involved processes: the host process, the COI daemon, and the offload process.

The snapshot process is accomplished in two separate steps. In step one, all of the commu-
nications between the host process and the offload process are stopped, and the channels are
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drained. In step two, a snapshot of the offload process is captured and saved in the file system
of the host. These two steps are implemented by snapify_pause() and snapify_capture(),
respectively.

COI_Daemon 

offload_proc 

PCI Express 

 
Linux Kernel 

 
Phi Linux Kernel 

BLCR BLCR 

1. Service Cmd. 

3. ACK 

4. Pre-Snapshot Cmd. 

5. Take Snapshot 5. Take Snapshot 

Xeon-Phi Host 

2.  

6. Resume Cmd. 

host_proc 

Figure 2.3: Overview of taking a snapshot.

Pause

To pause the communications between the host process and the offload process, the host
process calls snapify_pause() and passes the handle of the offload process (COIProcess in the
structure) to snapify_pause(). A directory structure in the host’s file system for storing the
files of a snapshot is also needed by snapify_pause() (and snapify_capture()). The path to
the directory is passed to snapify_pause() through the member variable m_snapshot_path.
In the first step of snapify_pause() it saves the copies of the runtime libraries from the host’s
file system needed by the offload process to the snapshot diirectory.2

Fig. 2.3 shows the interactions between the host process, the COI daemon, and the offload
process that are triggered by snapify_pause(). Function snapify_pause() first sends a snapify-
service request to the COI daemon (step 1 in Fig. 2.3). The daemon then creates a UNIX pipe
to the offload process, and writes the pause request to the offload process. Next the daemon
signals the offload process, triggering the signal handler in the offload process to the pipe and
send an acknowledgement back to the daemon through the pipe (step 2). The daemon then
relays the acknowledgement back to the host process (step 3). At this point all parties (the host

2MPSS maintains copies of the runtime libraries on the host file system. Therefore, as an optimization we do
not copy the libraries of the offload process from the coprocessor back to the host system.
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process, the offload process, and the COI daemon) have agreed to pause the communications
and drain the communication channels.

The COI daemon is chosen as the coordinator of Snapify’s pause procedure. This is because
there is one daemon per coprocessor, and each daemon listens to the same fixed SCIF port
number. It services pause requests that may come from different host processes. It also maintains
a list of active requests. Upon receiving a new pause request, the daemon adds an entry to the
list. The entry is removed after the pause request is serviced.

To avoid any interference with its regular tasks, the daemon uses a dedicated Snapify monitor
thread to oversee the progress of the pause procedure. Whenever a request is received and no
monitor thread exists, the daemon creates a new monitor thread. The monitor thread keeps
polling the pipes to the offload processes on the list of active pause requests for status updates.
The monitor thread exits when there is no more active pause request in the list.

Following the initial handshake snapify_pause() sends a pause request to the offload process
(step 4 in Fig. 2.3) to drain the communication channels. The draining needs the collaboration
between the host process, the COI daemon, and the offload process, and will be discussed in
more detail shortly. It is a necessary step to ensure that the snapshots form a consistent global
state (see Section 2.3). During the draining process some of the threads in the host process
and the offload process spawned by the COI library are blocked. The blocking of these threads
keeps the SCIF channels from being used until snapify_resume() is called. These threads are
responsible for sending and receiving COI commands, COI events, and the COI logs.

After the SCIF channels are quiesced, the offload process will save its local store (memory
allocated in the offload process’s memory space for storing data in COI buffers) to the host’s
snapshot directory. This operation does not use any existing SCIF channels between the host
process and the offload process. Saving the local store and the snapshot will be discussed in
detail in Section 2.6.

At the end of snapify_pause() all of the SCIF channels between the host process, the
COI daemon, and the offload process become empty. To notify the host process that the pause
has completed, the offload process sends a message through the pipe to the COI daemon, and
the COI daemon informs the host process that the offload process has completed the pause
operation. After this the offload process waits on the pipe to wait for the next request from
the the host process. The next request is either a capture or a resume request, which will be
discussed later.

We now give more details on how snapify_pause() drains the SCIF communication channels.
We first classify all SCIF communication use instances in the COI runtime to four different
cases.
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Figure 2.4: Executing an offload function.

1. The host process, the offload process, and the COI daemon exchange messages when an
offload process is created and before it is destroyed. These messages carry information
regarding process creation, confirmation, request for termination, and etc.

2. The host process and the offload process use one SCIF channel to perform RDMA transfers
of the data in COI buffers. The RDMA transfers are carried out by scif_writeto() and
scif_readfrom() functions.

3. The host process, the COI daemon, and the offload process have several pairs of client-
server threads. Each server thread serves only one client thread. It handles the incoming
commands in a sequential fashion. The commands are sent by the client thread through a
dedicated SCIF channel.

4. The execution of an offload function is also implemented by a client-server model. In order
to take a snapshot during the execution of an offload function, however, we treat this case
separately. Our method handles both synchronous and asynchronous offload executions.

Fig. 2.4 reports the client-server model that executes offload functions. When a thread
Pipe_Thread1 in the host process enters an offload region, it sends a run function request
to the server thread Pipe_Thread2 in the offload process. After sending this request,
Pipe_Thread1 performs a blocking receive to wait for the result, while Pipe_Thread2
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calls the function and sends the function’s return value back to Pipe_Thread1 of the host
process.

For each of the four use cases of SCIF we develop a method to drain the SCIF communication
channels. For case 1, we declare the initialization and cleanup code regions of creating and
terminating offload processes as critical regions, protected by a mutex lock. When snapify_-

pause() is called, it will try to acquire the lock. If a thread is executing the code in a critical
region, snapify_pause() will be blocked until the thread leaves the critical region. On the other
hand, once snapify_pause() holds the lock, any other thread that attempts to enter these
critical regions will be blocked.

For case 2 we delay any snapshot attempt when a RDMA transfer is active. Similar to the
case above, we protect the call sites of SCIF’s RDMA functions with mutex locks.

To handle a SCIF channel in the client-server model of case 3, we take advantage of the
sequential nature of the client-server implementation in COI. We added a new “shutdown” request
to the server’s request handling routine. This request is only issued by snapify_pause(), and is
used as a special marker that indicates no more commands will follow until snapify_resume()

is called. To send the shutdown request, snapify_pause() first tries to acquire the lock that
is used by the client thread to protect the communication channel. After snapify_pause()

acquires the lock, the client thread will not be able to send any more requests. The lock that
is used by a client thread will only be released in snapify_resume(). After acquiring the lock
snapify_pause() sends the shutdown request to the server. The pause function will not continue
until all of the server threads in the host process, the COI daemon, and the offload process
receives a shutdown command. This ensures that the SCIF channels used between the client
and the server threads stay empty until snapify_resume().

For case 4 to drain the SCIF channel used by Pipe_Thread1 and Pipe_Thread2 we made a
number of changes to the implementation of the COI pipeline. First we transformed the two
send functions in Step 1 and 7 to be blocking calls. We then placed these two send functions in
two separate critical regions protected by mutex locks. The thread executing snapify_pause()

in the host process and in the offload process will acquire these locks. The locks will be released
in snapify_resume().

Capture

To capture a snapshot of an offload process the host process calls snapify_capture(). Similar
to snapify_pause(), the caller of snapify_capture() passes the handle to the offload process
and the path to the directory on the host’s file system where the snapshot files should be
saved. It also gives a Boolean variable terminate to indicate whether the offload process should
be terminated after its snapshot is captured. At the beginning snapify_capture() sends the
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capture request first to the COI daemon, which in turn forwards the request to the offload
process through the pipe opened in snapify_pause(). The snapshot of the offload process can
be captured by any application-transparent checkpoint tool.

Our current implementation uses BLCR to capture the snapshot of the offload process. When
the offload process receives the capture request from the pipe, it calls BLCR’s cr_request_-

checkpoint(). When the snapshot is captured, the offload process sends back the completion
message using the pipe to the COI daemon, which in turn informs the host process.

The snapshot of the offload process is saved on the host file system. The snapshot is written
by the checkpoint and restart tool running on the coprocessor. Section 2.6 details several novel
techniques of saving a snapshot “on the fly” from the coprocessor to the host file system.

Notice that snapify_capture() is a non-blocking function call. It returns immediately
with a semaphore m_sem in snapify_t* snapshot. The caller can thereafter call snapify_-

wait() with the snapify_t structure to wait for the completion of the capturing operation.
The semaphore will be signaled when the host process receives the complete message from the
COI daemon.

2.4.2 Resume

To resume the execution of the blocked threads of both the host process and the offload process
after a snapshot of the offload process is taken, the host process calls snapify_resume() with
the handle of the offload process. To resume the host process first sends a resume request to
the COI daemon. The daemon then forwards the request to the the offload process through the
pipe that is created in snapify_pause(). In snapify_resume(), both the host process and the
offload process release all the locks acquired in the pause operation. Once the locks are released
in the offload process, the offload process sends an acknowledgement back to the host process
through the COI daemon. After the host process receives the acknowledgement and releases the
locks, it returns from snapify_resume().

2.4.3 Restore

To restore an offload process from its snapshot the host process calls snapify_restore() with
the path to the snapshot files. Snapify relies on the COI daemon and Xeon Phi’s checkpoint and
restart tool (BLCR) that is also used by snapify_capture() to restart an offload process. To
restore, snapify_restore() first sends a restore request to the COI daemon. After receiving
the restore request, the COI daemon first copies the local store and the runtime libraries needed
by the offload process on the fly to the coprocessor. Then it calls BLCR to restart the offload
process from its snapshot. We developed a novel I/O mechanism, called Snapify-IO, that allows
BLCR to read the snapshot of the offload process “on-the-fly” from the host storage directly
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without first saving the entire snapshot in the memory file system on Xeon Phi. Snapify-IOwill
be discussed in detail in Section 2.6.

After BLCR restores the process image of the offload process, the host process and the
offload process will reconnect all of the disconnected SCIF communication channels between
them. After SCIF channels are restored, the host process and the offload process re-registers the
memory regions used by the COI buffers for RDMA. The re-registration of a buffer may return
a new RDMA address different from the original one. Therefore, we keep a lookup table of (old,
new) address pairs for conversion.

Since the restored offload process is new, snapify_restore() returns a new COI process
handle (COIProcess*) to the offload process. The new handle can be used by the host process in
the subsequent COI function calls. Notice that the offload process, though restored, is not fully
active after snapify_restore() returns. The caller needs to call snapify_resume() so that
the blocked threads in the host process and the offload process can continue their executions.

2.5 API Use Scenarios

In this section, we explain how Snapify’s API can be used to implement checkpoint and restart,
process swapping and migration.

2.5.1 Checkpoint and restart

To take a checkpoint of an offload application we need to capture both the snapshots of the host
process and of the offload process. To capture a snapshot of the host process, we can use an
application-transparent checkpoint and restart tool like BLCR on the host. As to the snapshot
of the offload process, we use snapify_pause() and snapify_capture() in Snapify’s API.

The sample code in Fig. 2.5(a) shows how Snapify’s API can be combined with the host
BLCR to implement checkpoint and restart for offload applications. Fig. 2.5(b) and 2.5(c) reports
the timing diagrams of the checkpoint and restart. The function snapify_blcr_callback() is
a callback function that is registered to BLCR on the host. When BLCR receives a checkpoint
request, it will call snapify_blcr_callback(). Within snapify_blcr_callback(), we call
BLCR’s cr_checkpoint() to take a snapshot (a checkpoint) of the host process. Before cr_-

checkpoint(), we call snapify_pause() and snapify_capture() to take a snapshot of the
offload process. Notice that snapify_capture() is a non-blocking call. Therefore, we need to
wait for its return in the “continue” section of the if statement after cr_checkpoint() returns.

In restarting BLCR first restores the host process. The execution of the restored host process
will begin after cr_checkpoint() returns with ret > 0. The control flow of the execution will
go through the “restart” section of the “if” statement. There we call snapify_restore() to
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int snapify_blcr_callback ( void * args){
int ret = 0;
snapify_t * snapshot = ( snapify_t *) args;
snapify_pause ( snapshot );
snapify_capture (snapshot , false );
ret = cr_checkpoint (0);
if ( ret > 0 ) { // Restarting .

snapify_restore (snapshot ,
GetDeviceId (snapshot -> m_process ));

snapify_resume ( snapshot );
// Save snapshot . m_process .

}
else { // Continue .

snapify_wait ( snapshot );
snapify_resume ( snapshot );

}
}

(a) Sample code.
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Figure 2.5: Using Snapify’s API to implement checkpoint and restart.
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recreate the offload process. In the sample code the offload process will be restored on a Xeon
Phi coprocessor whose device ID is extracted from COIProcess* by function GetDeviceID().

2.5.2 Process swapping

Fig. 2.6 shows sample process swapping-out and swapping-in functions and their timing diagrams.
Process-swapping can be used, for example, by a job scheduler to swap out one offload process
and swap in another based on the scheduler’s scheduling and resource management policies. Both
of the swapping functions are called in the context of the host process. The caller of snapify_-

swapout() needs to prepare a directory where the snapshot files of the offload process can be
stored, and passes the path in parameter snapshot to snapify_swapout(). The implementation
of snapify_swapout() is fairly straightforward: we call snapify_pause(), snapify_capture(),
and snapify_wait() one by one. Since the offload process is to be swapped out, we set the
second parameter of snapify_capture() to be true, terminating the offload process after its
snapshot is captured and saved. The returned pointer of snapify_t structure from snapify_-

swapout() represents a snapshot of the offload process. It can be used to restore the offload
process.

The swapping-in of an offload process reverses the effect of swapping-out. In snapify_-

swapin(), we use snapify_restore() to restore the offload process. The returned Snapify data
structure snapshot from snapify_swapout() is passed to snapify_swapin(), which uses the
path of the snapshot files in snapshot to restart the the offload process on the specified Xeon
Phi coprocessor (identified by device_to parameter). The new handle to the restored offload
process is returned at the end of snapify_swapin().

2.5.3 Process migration

Fig. 2.7 shows the implementation of a process-migration function. Process migration moves
an offload process from one coprocessor to another on the same machine. It can be viewed as
swapping out the offload process from coprocessor 1 and swapping it in on coprocessor 2. Its
implementation simply reuses snapify_swapout() and snapify_swapin().

2.5.4 Command-line tools

The offload applications can directly benefit from Snapify without any modifications. Checkpoint
and restart can be applied transparently by using BLCR’s cr_checkpoint command-line tool
on the host system. This utility will send a signal to trigger the checkpoint procedure, which
calls Snapify’s own BLCR callback function as shown in Fig. 2.5(a). If the MPI runtime supports
BLCR, MPI applications using Xeon Phi for offload computation will automatically benefit
from Snapify.
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In order to provide swapping and migration transparently, we provide a command-line utility
named snapify. Its arguments are the PID of the host process and a command. The commands
include swapping-out, swapping-in, and migration. In case of swapping-in and migration, snapify

also needs an additional parameter indicates the coprocessor number on which the offload process
will be launched. This utility signals the host process and submits the command through a pipe.
The signal handler provided by Snapify in the host process then calls one of the three functions
in Fig. 2.6(a) and 2.7 according to the user-given command.

Remark. Process swapping and migration may lead to resource contentions. E.g., two
processes might be swapped into the same Xeon Phi. Such problems are best addressed by a job
scheduler like COSMIC in [23], and are beyond the scope of this work.

2.6 Snapify-IO

All of the snapshots taken on the host and on a Xeon Phi coprocessor are saved to a file system
mounted in the host OS. Snapify provides three novel “on-the-fly” approaches to store and
retrieve snapshots between the host and coprocessors. All of these methods use very little Xeon
Phi memory for buffering. In the following we will first describe the most efficient approach
based on SCIF’s RDMA API, called Snapify-IO. Then we will discuss our NFS-based methods.

2.6.1 Snapify-IO.

Snapify-IO is a remote file access service that transfers data using RDMA between the host
and the Xeon Phi coprocessors on a Xeon Phi server. It provides a simple interface that uses
UNIX file descriptors as data access handles. Snapify-IO allows a local process running on a
Xeon Phi coprocessor to read from or write to a remote file on the host through standard file
I/O functions, as if the file is local. For example, the file descriptor created by Snapify-IO can
be directly passed to BLCR for saving and retrieving snapshots. Internally, Snapify-IO transfers
the data over the PCIe bus using SCIF’s RDMA data transfer functions.

Fig. 2.8 shows Snapify-IO’s architecture. Snapify-IO consists of a user-level library providing
a simple I/O interface (Snapify-IO library) and a standalone binary called Snapify-IO daemon.
The Snapify-IO library is linked to the user code that wants to use Snapify-IO for remote file
I/O, while each SCIF node (the host and any of the Xeon Phi coprocessors on a Xeon Phi
server) runs a Snapify-IO daemon as a long-running process. The Snapify-IO daemon serves
I/O requests from both the local user processes using Snapify-IO library and remote Snapify-IO
daemons. It can either receive data from a local process, transfer the data to a remote Snapify-IO
daemon, which in turn saves the data into a remote file system. Or it can retrieve data from a
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snapify_t * snapify_swapout ( const char * path , COIProcess * proc){
snapify_t * snapshot = ( snapify_t *) malloc ( sizeof ( snapify_t ));
snapshot -> m_snapshot_path = path;
snapshot -> m_process = proc;
snapify_pause ( snapshot );
snapify_capture (snapshot , true);
snapify_wait ( snapshot );
return snapshot ;

}

COIProcess * snapify_swapin ( snapify_t * snapshot , int device ){
COIProcess * ret = 0;
snapify_restore (snapshot , device );
snapify_resume ( snapshot );
ret = snapshot -> m_process ;
free( snapshot );
return ret;

}

(a) Sample code.
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Figure 2.6: Using Snapify’s API to implement process swapping.
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COIProcess * snapify_migration ( COIProcess * proc , int device_to ){
const char * path = "/tmp";
snapify_t * snapshot = snapify_swapout (path , proc);
return snapify_swapin (snapshot , device_to );

}

Figure 2.7: An implementation of process migration.

local file system, transfer the data to a remote Snapify-IO daemon, which feeds the data into a
remote user process.

Snapify-IO library is designed for transparent integration with the standard read() and
write() system calls. Its only API function snapifyio_open() returns a standard UNIX file
descriptor. It accepts three arguments: a SCIF node ID, a path to a file that is valid on the SCIF
node, and a file access mode flag indicating either a read or write mode (but not both). The
returned file descriptor represents a file on a (remote) SCIF node as specified by the arguments.
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Figure 2.8: The architecture of Snapify-IO.

Snapify-IO uses a UNIX socket as the local communication channel between the Snapify-
IO library and the Snapify-IO daemon. When snapifyio_open() is called, the Snapify-IO
library creates a UNIX socket that connects to the local Snapify-IO daemon. Once the socket
is established, snapifyio_open() sends the SCIF node ID, the file path, and the access mode
to the Snapify-IO daemon. It then returns the file descriptor of the socket to the caller. To
serve the local socket connections, the Snapify-IO daemon has a local server thread listening on
a designated port. Once the server thread accepts the socket connection from the Snapify-IO
library, it spawns a local handler thread to handle further I/O activities coming from the user
process, which may either write to or read from the socket, depending on the access mode.
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Notice that the file descriptor returned by snapifyio_open() is a UNIX file descriptor, so the
user code can call close() to release the resources associated with the file descriptor.

The communication channel between two Snapify-IO daemons is a SCIF connection. After
receiving the SCIF node ID, the file path, and the access mode from a local user process, the
Snapify-IO daemon’s local handler thread will create a new SCIF connection to the Snapify-IO
daemon on the specified SCIF node. Once the SCIF connection is established, the local handler
thread will forward the path and the access mode of the file to the remote Snapify-IO daemon,
and register an internal buffer to the SCIF library for RDMA transfer. The buffer size is
configurable. To balance between the requirement of minimizing memory footprint and the need
of shorter transfer latency, the buffer size is set at 4MB. To handle incoming SCIF connections,
the Snapify-IO daemon employs a remote server thread, which listens to a predetermined SCIF
port. Once the remote server thread accepts a SCIF connection from a remote Snapify-IO
daemon, it spawns a handler thread to handle communications over the newly established SCIF
channel.

Once the communication channels are established, the local handler thread will start to
direct the data flow between the user application and the remote file. In write access mode, the
local handler will copy the data written to the socket by the user application to the registered
RDMA buffer. After the buffer is filled, the local handler will send a SCIF message to notify
the remote Snapify-IO daemon (i.e. the daemon’s remote handler thread) using scif_send().
Subsequently the remote handler thread will use SCIF’s RDMA function scif_vreadfrom() to
read the data from the registered RDMA buffer, and saves the data to the file system at the
specified location. After the RDMA completes, the local handler thread will reuse the RDMA
buffer and repeat the above process until all data from the user process are saved to the remote
file. In the read access mode, the data flow in the reverse direction. The remote handler thread
in the remote Snapify-IO daemon will read data from the specified file, and copy the data to
the registered RDMA buffer using scif_vwriteto(). Once the buffer is filled, it will notify the
local handler thread in the local Snapify-IO daemon, which in turn will copy the data from the
RDMA buffer to the socket.

Snapify uses Snapify-IO to save and retrieve snapshots. The COI library with Snapify
implementations is linked with the Snapify-IO library. To take a snapshot of an offload process,
Snapify calls snapifyio_open() in write mode in the pre-snapshot phase. The returned file
descriptor is then passed to BLCR, which uses it to write the context file. Similarly, to restart
an offload process Snapify calls snapifyio_open() to open a remote context file in read mode.
The returned file descriptor is then used by BLCR to load the process context from the remote
file to the local Xeon Phi’s memory. Thanks to Snapify-IO, the data transfer between a Xeon
Phi coprocessor and the host’s file system is completely transparent to BLCR. In addition, the
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Table 2.2: Characteristics of our Xeon Phi server.

Host Processor Coprocessor
CPU Intel E5-2630 @

2.30GHz
Intel Xeon Phi 5110P

Cores 6 physical cores (12
threads) per socket

60 physical cores (240
threads) per coproces-
sor

Memory 32GB 16GB per coprocessor
OS Linux RHEL 6.2, ker-

nel 2.6.32-220
Linux kernel 2.6.38.8
MPSS 2.1.6720-130

Number 2 CPU sockets 2 coprocessors

Snapify-IO library does not introduce extra SCIF connections. Therefore, it does not complicate
the process of taking a snapshot.

2.6.2 NFS.

We also implemented two optimizations to speedup NFS-based snapshot storage. In these
approaches Snapify uses NFS to mount the host file system on a Xeon Phi coprocessor. A
snapshot is stored or retrieved through the NFS. To overcome the problem of high latency of
small writes in NFS, we developed two new approaches based on buffering. In the first approach
we modified BLCR’s kernel module such that it accumulates write data to a larger chunk before
the data is written to the file system. Since using a modified BLCR’s kernel module may not
always be feasible, our second approach uses the same concept but applies it in the user level.
In this approach the BLCR writes are redirected to our user-space utility through the standard
output and input. This utility buffers data from its standard input and writes out the data in
the buffer to NFS at larger granularity.

2.7 Experimental Results

We used micro benchmarks and a suite of MPI and OpenMP applications to evaluate Snapify-IO
and Snapify on a Xeon-Phi cluster. This section reports our experimental results.

2.7.1 Setup

Table 2.2 shows the hardware and software configuration of our computing system. For Snapify-
IO evaluation, we used a single node that has one Xeon Phi (8GB of physical memory). For
MPI applications, we used a 4-node cluster, where each node in the cluster has one Xeon Phi
many-core processor with 8GB of memory.
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Table 2.3: File copy performance (seconds).

Size Device to Host Host to Device
(MB) scp NFS Snapify-IO scp NFS Snapify-IO

1 0.97 0.01 0.03 0.48 0.01 0.07
64 15.07 3.23 0.43 14.08 1.94 0.53

128 29.88 6.36 0.85 28.30 3.96 1.82
256 57.02 11.81 1.67 55.50 7.95 3.68
512 113.71 20.91 3.34 111.07 16.07 6.17

1024 224.68 40.10 6.76 221.59 31.06 9.57

Table 2.4: Comparing Snapify-IO with NFS-based I/O in BLCR (seconds).

Checkpoint time (Snapshot + Write) Restart Time (Read + Restore)
Size (MB) Local (RAM) NFS NFS-Buffered (kernel) NFS-Buffered (user) Snapify-IO Local (RAM) NFS Snapify-IO

1 2.16 67.64 1.70 2.71 2.76 0.577 1.392 0.979
64 2.38 71.21 3.25 4.81 2.28 0.829 3.547 1.377

128 2.62 70.97 4.30 7.64 3.71 0.832 5.834 2.066
256 3.15 75.67 7.30 12.48 4.59 1.255 8.975 3.397
512 4.12 80.98 12.60 20.98 6.44 2.034 17.613 4.934

1024 6.34 87.27 21.44 30.47 9.94 3.732 32.550 7.373
2048 10.14 118.65 38.48 53.82 17.41 6.736 62.217 13.506
4096 NA 155.92 93.05 109.06 32.84 NA 121.452 22.935

2.7.2 Snapify-IO performance

To evaluate the performance of Snapify-IO, we used a micro-benchmark that copies files of
various sizes between the host and the Xeon Phi. The micro-benchmark runs natively on the
Xeon Phi. We compared the time taken by our Snapify-IO to move files between the host and
the Xeon Phi with the time taken by two methods natively supported by Xeon Phi’s OS, i.e.
scp and read/write from NFS mounted directories.

Table 2.3 shows the time taken to copy files of different sizes (file-size ranged from 1MB to
1GB). We observed that Snapify-IO consistently performs better than NFS and scp (except
for the 1 MB file-size case, where NFS outperforms others by buffering data). As the file size
increases, Snapify-IO’s advantage is more pronounced. For a 1GB file, Snapify-IO has about
6x better write performance and 3x better read performance when compared with NFS. For
the same file, Snapify-IO has 30x faster write performance and 22x faster read performance
when compared with scp. We also observed that transfer of a file from the Xeon Phi to the
host by using Snapify-IO is generally faster than moving the same file from the host to Xeon
Phi. This is because Snapify-IO daemon on the host flushes the file to the secondary storage
asynchronously. Thus the write operation on the host runs parallel to the data transfer.

We also evaluated the impact of using Snapify-IO for storing and restoring BLCR’s check-
points of processes on the Xeon Phi. We ran a second micro-benchmark as a native application
on the coprocessor and captured the snapshots using BLCR. Our micro-benchmark performed a
malloc() call and it had a long loop in an OpenMP region (240 threads). We used different
malloc sizes (ranging from 1MB to 4GB) to control the file-size of snapshots. Table 2.4 compares
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the performance of Snapify-IO with three variants of read/write from NFS mounted directories,
as well as a method (labeled as Local in Table 2.4) that saves the application snapshot in the
physical memory of the Xeon Phi. The BLCR checkpoint time in Table 2.4 is the end-to-end
latency of capturing and saving the process snapshot. BLCR restart time is the end-to-end time
to read and restore the snapshot. Note that in most cases the snapshot is written to and read
from the host file system (except the Local case). As expected, storing and restoring snapshots
from the physical memory of the Xeon Phi (the Local case) takes the least time. However, when
the checkpoint file-size increases to 4GB, it is impossible to store the checkpoint file in the
physical memory of the Xeon Phi (memory limit on the Xeon Phi card is 8GB, and 4GB is
already used by the micro-benchmark). In practice, it is not feasible to save checkpoint files
locally because, more often than not, several other processes on the Xeon Phi are already using
the limited physical memory on the Xeon Phi.

The performance of all three variants of NFS was poor (when compared with Snapify-IO)
for storing checkpoints. BLCR performs multiple small writes before reaching the loop where
it actually takes snapshots of the application’s memory pages, and these small writes lead to
poor performance for the NFS variants. Our method of “NFS-Buffered in kernel” boosts the
performance of NFS to a large degree while our buffering in user-space does so to a lesser
degree (but it still provides significant improvements). Finally, Snapify-IO performance is a large
improvement compared to NFS and NFS-Buffered (both modes).

Note that the buffering solutions do not apply to the cases of restarting or restoring. Again,
restarting from checkpoint files in the physical memory of the Xeon Phi is very fast, but this is
generally not possible due to the limited physical memory on the Xeon Phi. We observed that
Snapify-IO performs 1.4x, 2.6x and 5.9x faster than NFS for 1MB, 256MB and 4GB snapshots,
respectively.

Table 2.5: Description of benchmarks.

Name Description Problem Size
MD Molecular dynamics simulation 25000 particles, 10 time steps
MC Monte Carlo simulation of N paths and T time steps N = 32M, T = 2000
SG A series of matrix-matrix multiplications (SGEMM) 8Kx8K matrices, 10 iterations
SS Supervised semantic search indexing computing top K for each of the

Q queries
256K documents, K=32, Q=512

KM Computing K-means using Lloyd clustering algorithm 4M points, 3 dimensions, 32 means
LU-MZ A CFD application using lower-upper Gauss-Seidel solver [12] Grid: 162x162x162, 250 iterations
BT-MZ Computation fluid dynamics (CFD) using block tri-diagonal

solver [12]
Grid: 162x162x162, 200 iterations

SP-MZ A CFD application using scalar penta-diagonal solver [12] Grid: 162x162x162, 400 iterations
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2.7.3 Snapify overhead

We evaluated Snapify on 8 OpenMP and 3 NAS MPI benchmarks (lu-mz, sp-mz, bt-mz
in [43]). The benchmarks are described in Table 2.5. All benchmarks were modified to offload
computations to the Xeon Phi. All time measurements were made on the host, unless mentioned
otherwise.

Fig. 2.9 compares the runtime of the normal executions (no snapshot) of the OpenMP
benchmarks with and without Snapify support. Each experimental run was repeated 20 times.
The average runtime is reported as bars, and the runtime overhead (in percentage) added by
Snapify is shown in line graph on the right y-axis. In average Snapify adds a 1.5% overhead
to the application runtime, and in the worst case the overhead is less than 5% (MD). We used
the Linux command-line tool time to measure the end-to-end execution time of an offload
application.
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Figure 2.9: Runtime overhead of Snapify.

2.7.4 Checkpoint and restart

Fig. 2.10(a) shows the checkpoint time and 2.10(b) reports the size of the files generated by
the checkpoint procedure. As detailed in Section 2.4.1, during pause the local store (files on
Xeon Phi for COI buffers) of the offload process was stored in the snapshot directory on the
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Figure 2.10: Performance evaluation on OpenMP benchmarks.
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host system as a file. Thus for benchmarks with a large local store (SS and SG in Fig. 2.10(b)),
the pause is longer. The time that BLCR on the host and BLCR on the coprocessor take to
capture and save snapshots are the bars labeled as “Snapshot + Write (host)” and “Snapshot +
Write (device)”, respectively. The host BLCR finishes early in all cases except for SS and SG. In
these two cases, Fig. 2.10(b) indicates a large host-process snapshot while the offload-process
snapshot is fairly small. Thus the offload process finishes early. The checkpoint time ranges from
3 to 21 seconds in time, shorter for small files (8.4 MB) and longer for large ones (1.3 GB).

Fig. 2.10(c) reports the restart time of the OpenMP benchmarks. The total restart time
ranges from 3 to 24 seconds across the benchmarks. Fig. 2.10(c) also reports the breakdown of
the time spent in each stage of the restart. The host-restart time varies based on the size of
the host-process snapshot. Benchmarks SS and SG have larger host snapshots, and thus longer
host-restart time. The time of restoring an offload process strongly depends on the size of local
store, which is copied from the host to the coprocessor when the offload process is restored.

2.7.5 Process migration

Fig. 2.11(a) shows the runtime overhead of process migration. The migration time varies from
4.9 seconds (MC) to 31.6 seconds (SS). As expected, it is strongly correlated with the size of the
local store and the snapshot of an offload process. In process migration, the offload process copies
its local store directly from its current coprocessor to another coprocessor using Snapify-IO.
Thus the pause time in process migration is different from the one in the checkpoint procedure.
In all but one benchmarks the time of capturing and saving the snapshot of an offload process is
shorter than the time of reading the snapshot and restoring the offload process. This is because
Snapify-IO is faster when writing to the host from a coprocessor, as explained earlier.

2.7.6 Process swapping

Fig. 2.11(b) and 2.11(c) show the runtime of swapping-out and swapping-in, respectively. The
time of swapping out the offload processes ranges from 2.1 seconds to 11.8 seconds, and the
time of swapping-in takes between 2 seconds and 14.8 seconds. Except in the case of SS and SG,
the pause of swapping-out is much shorter than the time of the capturing phase. Again, this is
because the local stores of SS and SG are larger than their snapshots.

2.7.7 Checkpoint and restart for MPI

We use three MPI benchmarks lu-mz, sp-mz, and bt-mz, to evaluate checkpoint and restart
of MPI applications. For all three benchmarks, we choose the class C input size, and run the
benchmarks with 1, 2 and 4 MPI tasks (ranks). Each rank is executed on one node. Fig. 2.12(a)
and 2.12(b) report the time of taking a checkpoint and restarting from a checkpoint, respectively.
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Figure 2.11: Performance evaluation on OpenMP benchmarks.
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Fig. 2.12(c) shows the checkpoint size of a single rank. We observe that as the number of nodes
increases, CR time decreases at various degrees. This is because the checkpoint size of each MPI
rank decreases as the total number of MPI ranks increases. CR time ranges between 4 and 14
seconds for a single checkpoint, depending on the respective benchmarks and the number of the
MPI ranks. When no checkpoint is performed, the runtime of the benchmarks ranges from 2-3
minutes for the selected input size. This indicates the feasibility to taking frequent checkpoints,
particularly for larger inputs and longer runtime.
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2.8 Related Work

Checkpoint and restart (CR) has a long history in computing systems. Libckpt [104] was
one of the first UNIX implementations. Condor [129] provides CR and process migration for
load balancing. These libraries provide process-level checkpointing. There are also user-level
checkpointing libraries [45, 65, 75], and recent studies suggest using nonvolatile memory to
improve CR performance [81]. Rollback-recovery protocols in message-passing systems is a
classical research field [54]. Multiple MPI libraries, including Open MPI [69] and MPICH-V [21],
provide distributed CR for MPI applications.

Several previous studies proposed CR and process migration for GPUs. CheCUDA supports
a part of basic CUDA APIs [127]. It copies all the user data from a GPU to the host system
during checkpointing. Then it destroys the CUDA context before taking a checkpoint. The
data and context are copied back from the host to the GPU at post-checkpoint (restart) time.
NVCR keeps a database of the memory allocations in GPUs [98]. Before checkpointing it releases
all the memory contents and replays the log at the restart time. The replay is necessary to
avoid invalid memory addresses at restart time. This imposes overhead during restart time and
specially normal execution of application. CheCL provides CR and migration for OpenCL [128].
CheCL synchronizes the host and command queues by waiting for all commands to complete. A
command queue is used to schedule the execution of kernels and perform memory operations in
OpenCL context. CheCL benefits from a proxy mechanism to decouple the process from OpenCL
implementation. However, each kernel execution involves an additional step of inter-process
communication, incurring extra communication latency.

Process migration has been extensively studied in the past. Zap is a system that performs
process-group migration [99], while Wang et al. studied live migration of processes in HPC
environment [131]. In addition, live migration of entire virtual machines is a very useful tool for
data center and cluster administrations [38].

2.9 Conclusion

To conclude, in this chapter we presented Snapify, a set of extensions to Xeon Phi’s software
stack that captures process snapshots of offload applications. Using Snapify we implemented
application-transparent checkpoint and restart, process migration, and process swapping for
offload applications. Experimental results on OpenMP and MPI offload applications show that
Snapify added negligible runtime overhead (1.5% in average) and is very efficient in taking
snapshots and restoring processes.

We also created Snapify-IO, a remote file access service based on RDMA to transfer process
snapshots between the host system and coprocessors. Snapify-IO benefits both Snapify and
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the default checkpoint and restart tool for native applications. For native applications our
experimental results show that Snapify-IO achieves 4.7x to 8.8x speedup in checkpoint, and 4.4x
to 5.3x speedup in restart over NFS, for snapshot size between 1GB to 4GB.
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Chapter 3
DINO: Divergent Node Cloning for
Sustained Redundancy in HPC

3.1 Introduction

Reliability has been highlighted as a key challenge for next generation supercomputers [16, 27, 46].
Node failures are commonly due to hardware or software faults. Hardware faults may result from
aging, loss of power, and operation beyond temperature thresholds. Software faults can be due
to bugs (some of which may only materialize at scale), complex software component interactions
and race conditions that surface only for rare parallel execution interleavings of tasks [39].

One resilience method is redundant computing [22, 57, 55, 59]. It aims at improving reliability
and availability of systems by allocating two or more components to perform the same work. A
recent study [91] showed that redundancy could be a very viable and even cost-effective approach
for HPC on the cloud. Their approach to combine checkpointing and redundancy on Amazon
EC2 using a variable-cost spot market provides up to 7 times cheaper execution compared to
the on demand default market. Redundancy provides tolerance not only against hard faults
but also soft errors, such as Silent Data Corruptions (SDCs), which do not stop application
execution as they are undetectable. SDCs may manifest at application completion by producing
wrong results or, prior to that, wrong interim results. A study at CERN raised concerns over
the significance of SDC in memory, disk and RAID [101]. Their results indicate that SDC rates
are orders of magnitude larger than manufacture specifications. Schroeder et al.’s study [119] of
the DRAM errors on a large scale over the course of 2.5 years concludes that more than 8% of
DIMMs are affected by errors per year. SDCs can be detected by Dual Modular Redundancy
(DMR) and can be corrected with voting under Triple Modular Redundancy (TMR) [59].
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Current approaches for redundant computing do not provide a sustained redundancy level
during job execution when processes are hit by failures. When a replica fails, either the ap-
plication deadlocks (RedMPI [59]) or other replicas ensure that the application can progress
in execution [22]. Note that after a replica failure, even if the job can continue its execution,
the SDC detection module cannot guarantee application correctness (e.g., an undetected SDC
might occur). Checkpoint/Restart (CR) is another popular method for tolerating hard errors but
cannot handle soft errors. CR takes snapshots of all processes and saves them to storage. Should
a hard error occur, all processes re-load the last snapshot into memory and the application
continues.
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Figure 3.1: Modeled application runtime and job capacity per redundancy level for 100,000
nodes

Using the same simulation parameters as Ferreira et al. [57], we plotted in Fig. 3.1 the elapsed
times (left x-axis) of three jobs of 24/168/720 hours over different redundancy levels (y-axis)
ranging from no redundancy (0%) over half of the nodes replicated (50%) to dual redundancy for
all nodes (100%). The results (dashed lines) show that for a 720-hour job applications runtime
without replication is more than six times higher than under dual redundancy. Due to this, job
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capacity (2nd x-axis, dashed lines) increases up to a factor of 4.5 under dual redundancy, i.e., 4.5
times more dual redundant jobs of the same size can finish execution using the same resources
in the time it would have taken to finish a non-redundant job due to checkpoint and (mostly)
restart overheads. This shows that replication has the potential to outperform CR around the
exascale range.

Elliott et al. [51] showed in a more refined model that CR will eventually take longer than
redundancy due to recomputation, restart and I/O cost. At scale, this makes capacity computing
(maximizing the throughput of smaller jobs) more efficient than capability computing (using
all nodes of an exascale machine). E.g., at 80,000 CPU sockets, dual redundancy will finish
twice the number of jobs that can be handled without redundancy. This includes a redundancy
overhead of 0-30% longer time (due to additional messages) with hashing protocols [59], which
has no impact on bandwidth for Dragonfly networks since original and replica sphere exchange
full messages independently. As hash messages are small, they add latency but do not impact
bandwidth. Since twice the jobs finished under dual redundancy, this amounts to the same
energy.

This work targets tightly-coupled parallel applications/jobs executing on HPC platforms
using MPI-style message passing [63]. We use the term rank to refer to an MPI task/process. In
MPI-style programming, each MPI process is associated with a unique integer value identifying
the rank. Suppose there is a job with n ranks that requires t hours to complete without any
failures. This is called plain execution time. We consider systems with r levels of redundancy
(at the rank level). Our system then consists of r × n ranks, where n logical MPI tasks are seen
by the user while redundant replicas remain transparent. There is no difference between replicas
of the same task in terms of functionality as they perform the same operations. We also assume
the availability of a small pool of spare nodes. Spare nodes are in a powered state but initially
do not execute any jobs. We assume that a fault detector is provided by the system. We focus
on the recovery phase and consider works in failure detection [133, 90] orthogonal to our work.

We introduce node cloning as a means to sustain a given redundancy level. (We use the
terms node / MPI task cloning synonymously.) The core idea is to recover from hard errors
with the assistance of a healthy replica. A healthy replica is cloned onto a spare node to take
over the role of the failed process in “mid-flight”. To address shortcomings in current redundant
systems, we provide the following contributions:

• We devise a generic high performance node cloning service under divergent node execution
(DINO) for recovery. DINO clones a process onto a spare node in a live fashion. We
integrate DINO into the MPI runtime under redundancy as a reactive method that is
triggered by the MPI runtime to forward recover from hard errors, e.g., node crash or
hardware failure.
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• We propose a novel Quiesce algorithm to overcome divergence in execution without
excessive message logging. Execution of replicas is not in a lock-step fashion, i.e., can
diverge. Our approach establishes consistency through a novel, scalable multicast variant
of the traditional (non-scalable) bookmark protocol [115] and resolves inconsistencies
through exploiting the symmetry property of redundant computing.

• We evaluate DINO’s performance for MPI benchmarks. The time to regain dual redundancy
after a hard error varies from 5.60 seconds to 90.48 seconds depending on process image
size and cross-node transfer bandwidth, which is short enough to make our approach
practical.

• We provide a model with low error (at most 6%) for estimating job execution time under
redundancy and validate our model on the Stampede supercomputer [2]. We extrapolate
results under this model to extreme scale with a node MTTF of 50 years [60] and show
that dual redundancy+cloning outperforms triple redundancy within the exascale node
count range, yet at 33% lower power requirement.

• We show that 25 spare nodes suffice for a 256K node system (when nodes can be repaired)
independent of communication overhead of the applications.

The chapter is structured as follows: Challenges are discussed in Section 3.2. Section 3.3
presents a brief background on RedMPI. Section 3.4 introduces the design of DINO. Our Quiesce
algorithm is presented in Section 3.5. Section 3.6 details the implementation of DINO. Analysis
of job completion times are presented in Section 3.7. The experimental evaluation is provided in
Section 3.8. Simulation results are presented in Section 3.9. Section 3.10 compares our work to
related work. Section 3.11 summarizes the chapter.

3.2 Challenges

High performance node cloning service. With increasing memory capacity and the appli-
cations’ tendency to load larger data into memory, a cloning service that limits the interference
with the process execution is more preferable. A generic service that clones a process (including
the runtime/kernel state, memory content, and CPU state) onto a spare node is the first chal-
lenge. Off-the-shelf checkpointing libraries like BLCR [49] or MTCP [107] provide the needed
functionality. However, the downtime to take the snapshot, save it to storage and retrieve it
from storage on the other node followed by restoring the snapshot is quite high. We compare
“CR-based” process cloning with our “live” process cloning in Section 3.8.
Communication consistency and divergent states. The execution of replica ranks does
not occur in a lock-step fashion, i.e., they tend to diverge not within computational regions
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but also by advancing or falling behind relative to one another in terms of communication
events. This provides a performance boost to redundant computing as it allows the replicas
to execute freely to some extent. However, this divergence introduces complications for failure
recovery. Lack of a proper approach that guarantees the consistency, results in deadlock. This
would generally require message logging over large periods of time. Instead, we devised a novel
algorithm to establish communication consistency that tolerates divergence due to asymmetric
message progression and region-constrained divergence in execution.
Extending a job to a spare node. The MPI runtime leverages helper daemons on the
compute nodes to facilitate job execution. The helper daemons launch the MPI ranks, monitor
their liveness and play a role in application termination. The spare nodes are not part of a
specific job, and consequently, no daemon is running on them. A spare node might be assigned
to any job that has a failed replica as a part of the recovery phase in DINO. Thus, extending
the job includes modifying the internal data structures like routing information, task map and
daemon map information besides spawning a new daemon.
Integration into the runtime system. Cloning a process without carefully resuming its
communication state results in inconsistency and job failure. After the process is cloned onto a
spare node, it should exchange its communication endpoint information with the rest of the
processes in order to make normal application progress.

3.3 Background (RedMPI)

We use RedMPI [59] for redundant and transparent MPI execution. RedMPI detects SDCs
through analyzing the content of messages. Data corruption may occur in CPU, memory or cache,
either due to multi-bit flits under ECC or even single-bit flips without ECC. Such corruption
either does not affect the output or eventually materializes in the transmitted message (or in
disk/std I/O, which is addressed elsewhere [18]).

It supports linear collectives where all the collective operations are mapped to point-to-point
communication. These collectives do not provide high performance, especially not at large scale.
Another mode, named optimized, directly calls the collective module of the MPI library and
provides native performance (parallelized collectives). RedMPI benefits from the interpositioning
layer of MPI known as the MPI profiling layer.1 The current implementation of RedMPI is not
capable of detecting hard errors. As a result, an MPI process failure leads to a deadlock where
the processes wait indefinitely for progress in communication with the failed process (or until
the time-out from the communication layer terminates the application with an error).

1 PMPI is the MPI standard profiling interface. Each MPI function can be called with a MPI_ or PMPI_ prefix.
This feature of MPI allows one to interpose functions with MPI_ prefix while using functions with PMPI_ prefix
to implement the required functionality.
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In the following, we describe how basic MPI functions are implemented in RedMPI under
dual redundancy. MPI_Send and MPI_Recv are blocking calls, and MPI_Isend and MPI_Irecv

are non-blocking. MPI_Send is implemented with two non-blocking send calls to rank x and its
corresponding replica x′ followed by a call to MPI_Waitall (see Table 3.1). PMPI_Isend provides
the actual send functionality. Similarly, MPI_Recv is implemented with two PMPI_Irecv calls,
then a MPI_Waitall call. RedMPI extends the MPI_Request data structure to contain the extra
requests that it creates. For the sake of brevity, this is omitted. MPI_Isend and MPI_Irecv

are similar to MPI_Send and MPI_Recv but there is no MPI_Waitall call. The MPI_Wait is
implemented with a call to the actual function (PMPI_Wait), it then verifies the integrity of
the messages in case of a receive request. The implementation of MPI_Waitall performs a
PMPI_Waitall over all requests followed by the integrity check for received messages.

Table 3.1: Implementation of 6 basic MPI functions in RedMPI

MPI_Send(x,msg){ MPI_Recv(x,msg){
PMPI_Isend(x,msg); MSG msg′;
PMPI_Isend(x′,msg); PMPI_Irecv(x,msg);
MPI_Waitall(); PMPI_Irecv(x′,msg′);

} MPI_Waitall();
}

MPI_Isend(x,msg){ MPI_Irecv(x,msg){
PMPI_Isend(x,msg); MSG msg′;
PMPI_Isend(x′,msg); PMPI_Irecv(x,msg);

} PMPI_Irecv(x′,msg′);
}

MPI_Wait(req){ MPI_Waitall(req){
PMPI_Wait(req); PMPI_Waitall(req);
if(req.type=="Recv") if(req.type=="Recv")

verify_integrity(req); verify_integrity(req);
} }

There is no lock-step execution among the replicas and they only communicate directly to
resolve certain calls to avoid non-determinism. Wildcard values in source or tag (MPI_ANY_TAG,
MPI_ANY_SOURCE) and MPI_Wtime are examples of the latter case (not shown here), which are
supported (see [59]). In redundant computing, send (or receive) calls are always posted in pairs.
In other words, the number of posted send (or receive) requests to (or from) any two replicas
are always equal. We call this the symmetry property and exploit it in the Quiesce algorithm
(Section 3.5).
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3.4 Design of DINO

DINO has a generic process cloning service at its core. Node cloning creates a copy of a given
running process onto a spare node. The cloning mechanism itself is MPI agnostic and is applied
to processes encapsulating MPI tasks in this work. DINO considers the effect of cloning on the
MPI runtime system, as detailed later. Fig. 3.2 shows how the system retains dual redundancy
in case of a failure. A and A′ are logically equivalent and both perform the same computation.
They run on nodes 0 and 1, respectively, and comprise sphere 1 of redundant nodes. Ranks
B,B′ on nodes 2, 3 are also replicas and shape sphere 2. If node 2 (B) fails, its replica (B′) on
node 3 (source node) is cloned onto node 4 (a spare node) on-the-fly. The newly created rank B′′

takes over the role of failed rank B and the application recovers from the loss of redundancy. At
the end of node cloning, B′ and B′′ are in the same state from the viewpoint of the application,
but not necessarily from another rank’s point of view due to stale B references. The Quiesce
algorithm resolves such inconsistencies.

Figure 3.2: Node cloning: Application w/ 2 ranks under dual redundancy
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The process B′′ is created on node 4 as follows. While B′ performs its normal execution,
its memory is “live copied” page by page to B′′. This happens in an iterative manner (detailed
in Section 3.6). When we reach a state where few changes in dirty pages (detailed in the
implementation) remain to be sent, the communication channels are drained. This is necessary
to keep the system of all communication processes in a consistent state. After this, the execution
of rank B′ is briefly paused so that the last dirty pages, linkage information, and credentials are
sent to node 4. Rank B′′ receives and restores this information and then is ready to take over
the role of failed rank B. Then, communication channels are resumed and execution continues
normally. Between channel draining and channel resumption, no communication may proceed.
This is also necessary for system consistency with respect to message passing.

The time interval between error detection and the end of DINO recovery is a “vulnerability
window” where undetected SDCs may occur. The vulnerability window depends on the process
image size and is evaluated experimentally in Section 3.8 and projected for large scale in Section
3.9.

3.5 Quiesce Algorithm

The purpose of the Quiesce algorithm is to resolve the communication inconsistencies inside
DINO at the library level and provide transparent and consistent recovery to the application
layer. The inconsistencies are rooted in the state divergence of replicas. In Section 3.3, we
described basic MPI functions and their implementation inside RedMPI. Blocking operations
impose limited divergence. But non-blocking operations can easily create scenarios where the
state of replicas differs largely as there is no enforced state synchronization among replicas. Only
application barriers are true synchronization points and RedMPI does not introduce additional
barriers. However, the application-specific inter process dependencies caused by wait operations
limit the divergence among replicas. Thus, divergence of replicas is application-dependent. If
an application only uses Send/Recv (blocking calls), the divergence is bounded by 3 MPI calls
(see Fig. 3.3-A). But if it has “n” Isend/Irecv calls followed by a Waitall, then the divergence
bound is 2n+ 1 (see Fig. 3.3-B). Note that the bound is an indirect result of communication
dependencies.

Algorithm 1 shows the steps for Quiesce. Let us assume that rank B has failed and rank B′

is cloned to create B′′, which takes over the work of B. Ranks B and B′′ are in the same state,
but any other ranks may still assume B′′ to have the state of B.

Stage 1 and 2 of the Algorithm 1 clear the outgoing channels of B′ and of any other ranks
that have initiated a send to B′. We modified the bookmark exchange protocol [115] to equalize
these differences. The original bookmark protocol creates a consistent global snapshot of the
MPI job, which requires an all-to-all communication and is not scalable due to its high overhead.
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In our modified bookmark protocol, each process informs B′ of the number of messages it has
sent to B′ and receives how many messages are sent by B′. Then, the following question can
be answered: Have I received all the messages that B′ put on the wire? If not, some messages
(buffered or in transit) remain in the MPI communication channel and should be drained. Rank
B′ performs a similar task to drain all messages that other ranks put on the wire to reach B′.
In stage 2, receive requests are posted to drain the outstanding messages identified in stage
1. They are saved in temporary buffers. When the application execution later (during normal
execution) reaches a Recv call, these drain lists are first consulted to service the request. At the
end of the drain phase, no more outstanding send requests to/from B′ exist in the system.

Due to the symmetry property of redundant computing, every rank receives the same number
of messages from members of a given sphere (e.g., B and B′). The same rule applies to the number
of messages sent to a given sphere. This property is the basis for resolving the inconsistencies in
stages 3 and 4. The goal of these two stages is to prepare all ranks for communicating with B′′

by resolving any state inconsistency between their view of B and B′′. Every rank keeps a vector
of the number of messages that are sent to other ranks (Sent[]) and received from other ranks
(Received[]) along with the message signatures.

In stage 3, each rank X (other than B′) resolves its possible communication inconsistency
due to sends to B. Three cases are distinguished: (1) Bookmarks match (Sent[B] == Sent[B′]):
Then B, B′, and B′′ are in the same state from the point of view of X, and no action is needed.
(2) B lagged behind B′ (Sent[B] < Sent[B′]): Then sends from X to B are in transit/will be
issued (Fig. 3.4 part 3.2). Since B has been removed and B′′ is ahead (has already seen these
messages), they are silently suppressed (skipped). (3) B was ahead of B′ (Sent[B] > Sent[B′]):
Then there exist messages in transit/to be sent from X to B′ (Fig. 3.4 part 3.3). Since B′′ is in
the same state as B′, these messages need to be sent to B′′ as well.

In stage 4, the same procedure is performed on the Received counters. The 3 cases are
symmetric to the prior stage: (1) Bookmarks match (Received[B] == Received[B′]): Then B,
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B′, and B′′ are in the same state from the point of view of X, and no further action is needed.
(2) B′ was ahead of B (Received[B] < Received[B′]): Then X is expecting messages from B

(Fig. 3.4 part 4.2). Since B does not exist anymore and B′′ will not send them (as it is ahead),
these receives silently complete (skipped). Instead, X will provide the corresponding message
from B′ to the user level. (3) B′ lagged behind B (Received[B] > Received[B′]): Then X is
expecting messages from B′ (Fig. 3.4 part 4.3). Since B′′ and B′ are in the same state, both
will send those messages, even though X has already received a copy from B. Thus, messages
from B′′ are silently absorbed (up to the equalization point).
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Figure 3.4: A view of Steps 3 and 4 of the Quiesce algorithm

Fig. 3.5 (left side) depicts a program fragment with two ranks, A and B. Two computation
sections are separated by two message exchanges from rank B to A (for a predefined type
MSG). A failure scenario and our recovery approach with dual redundancy are as follows. Four
ranks are created by the MPI runtime, namely A, A′, B, B′. MPI_Recv and MPI_Send calls are
redirected to the RedMPI library and implemented as described in Section 3.3. Fig. 3.5 (right
side) describes the execution per rank at the levels of the application and DINO. Suppose rank
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Algorithm 1 Quiesce Algorithm
1: /* 1. Exchange communication state with B′ */
2: if (rank = B’) then
3: bookmarks *array;
4: for i = 0 to nprocs do
5: if i 6= B′ ∧ i 6= B then
6: /* send bookmark status, then receive into */
7: /* appropriate location in bookmarks array */
8: send_bookmarks(i);
9: recv_bookmarks(i, array[i]);

10: else
11: bookmark bkmrk;
12: /* Receive remote bookmark into bkmrk then send */
13: recv_bookmarks(B′, bkmrk);
14: send_bookmarks(B′);
15:
16: /* 2. Calculate in-flight msg(s) and drain them */
17: Cal_and_Drain();
18:
19: if ( rank 6= B′) then
20: /* 3. Resolve possible Send inconsistencies */
21: if (Sent[B] = Sent[B′]) then
22: noop;
23: else if Sent[B] < Sent[B′] then
24: Skip the diff to B′′;
25: else if Sent[B] > Sent[B′] then
26: Repeat the diff to B′′;
27: /* 4. Resolve possible Recv inconsistencies */
28: if (Received[B] = Received[B′]) then
29: noop;
30: else if (Received[B] < Received[B′]) then
31: Skip the diff from B′′;
32: else if Received[B] > Received[B′] then
33: Repeat the diff from B′′;

B fails at mark “X” in Fig. 3.5. Then ranks A and A′ receive the first message from B′ and
are blocked to receive a message from B. Rank B′, after sending all of its messages, continues
execution and reaches the waitall. At this point, only communications with single check-marks
have finished, and all processes are blocked so that recovery is required. During recovery, B′

is cloned to a spare node to create B′′ (equivalent to B). Process B′′ starts executing the
application from where B′ was blocked (the waitall). Therefore, neither B nor B′′ ever execute
the PMPI_Isend calls shown in the dotted area. Consequently, ranks A and A′ do not receive
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Figure 3.5: Program fragment with ranks A and B (left); its application-/DINO-level execution
for dual redundancy under 1 failure (right)

these messages from B (or B′′). In stage 1 of the Quiesce algorithm, all outstanding sends to
B′ are drained. Receive requests are posted by A and A′, and these messages are logged in
temporary buffers (indicated by double check-marks in Fig. 3.5). Receives from B, highlighted
by question marks, remain a unanswered. Quiesce then cancels the first receive (from B) in both
A and A′ and skips the next receive from B. Subsequently, ranks have consistent states and
rank B′′ may join the communication of the entire job.

This algorithm does not support wild-cards and assumes collective operations are implemented
over point-to-point messages. Other implementations of collectives require a more advanced
coordination among ranks during Quiesce. This includes distinguishing the missing messages
due to failure along with the topology to correctly determine the destination of messages and to
issue cancel/skip operations. Quiesce assumes that the applications issue MPI_{Wait/Waitall}

calls at least once after a sequence of n non-blocking operations.

3.6 Implementation

3.6.1 Architecture with Open MPI

Fig. 3.6 shows the system architecture where novel DINO components are depicted with shaded
boxes. RedMPI provides a transparent interpositioning layer for MPI calls between the application
and the MPI runtime system (Open MPI). Open MPI has 3 layers: the Open MPI (OMPI) layer,
the Open Run-Time Environment (ORTE) and the Open Portability Access Layer (OPAL).
OMPI provides the top-level MPI API, ORTE is the interface to the runtime system, and OPAL
provides a utility layer and interfaces to the operating system. The mpirun process interacts
with the cloning APIs to launch tools on source/spare nodes. The node cloning service provides
generic process-level cloning functionality via our extensions to BLCR [49]. This service includes
three new tools and functionalities named restore, pre-copy and clone. DINO recovery starts
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with mpirun initiating the restore tool on the spare node (Step 1). Then mpirun runs pre-copy

on the source node where the healthy replica exists (Step 2). A communication channel between
these two processes is created to transfer the process image. Then mpirun invokes the daemons
on every node for the Quiesce phase. The daemons send a Quiesce signal to the corresponding
ranks, and all ranks enter the Quiesce phase (Step 3). This phase includes the Quiesce algorithm
that is described in the previous section and ends by pausing the communication channels. The
mpirun process runs the clone tool on the source node to copy the last portion of process
information (Step 4). As the last step (Step 5), mpirun communicates with the daemons again
to update internal data structures of all processes and resumes the communication among ranks.
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Figure 3.6: DINO Architecture

We next discuss the steps taken during DINO recovery:
1. Launch restore tool The procedure starts with executing restore on the spare node. It
listens on a predefined port for incoming information and memory pages later sent by the
pre-copy and clone tools and builds the process state, both at kernel and application level, on
the spare node.
2. Pre-copy. This phase transfers a snapshot of the memory pages in the process address
space communicated to the spare node while normal execution of the process continues on the
source node. We use TCP sockets to create a communication channel between source and spare
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nodes. The pre-copy approach borrows concepts from [131] (under Linux 2.4), but adapted to
Linux to 2.6 (see related work for a comparison). Vital meta data, including the number of
threads, is transferred.2 The spare node receives the memory map from the pre-copy thread. All
non-zero pages are transferred and respective page dirty bits are cleared in the first iteration. In
subsequent iterations, only dirty pages are transferred after consulting the dirty bit. We apply
a patch to the Linux kernel to shadow the dirty bit inside page table entry (PTE) and keep
track of the transferred memory pages. The pre-copy phase terminates when the number of
transferred pages reaches a threshold (1MB in our current setting).
3. Channel Quiesce. The purpose of this phase is to create a settle point with the shadow
process. This includes draining all in-flight MPI messages. The runtime system also needs to stop
posting new send/receive requests. We build this phase on top of the functionality for message
draining provided by the CR module of Open MPI [69]. The equalization stage described in
Section 3.5 is implemented in this step.
4. Clone. This phase stops the process for a short time to transfer a consistent image of its
recent changes to the restore tool. The memory map and updated memory pages are transferred
and stored at the corresponding location in the address space in B′′. Then, credentials are
transferred and permissions are set. Restoration of CPU-specific registers is performed in the
next phase. The signal stack is sent next and the sets of blocked and pending signals are installed.
Inside the kernel, we use a barrier at this point to ensure that all threads have received their
register values before any file recovery commences. In short, different pieces of information are
transferred to fully create the state of the process.
5. Resume. In this phase, processes re-establish their communication channels with the recovered
sphere. All processes receive updated job mapping information, reinitialize their Infiniband
driver and publish their endpoint information.

3.6.2 MPI System Runtime

The off-the-shelf Open MPI runtime does not allow to dynamically add nodes (e.g., patch in
spare nodes to a running MPI job) and, subsequently, to add daemons to a given job. We
implemented this missing functionality, including manipulation of job data structures, creation
of a daemon, redirection of I/O and exchange of contact information with the mpirun process.
Finally, there are communication calls issued by RedMPI that violate the symmetry property.
These control messages are required to ensure correct MPI semantics under redundancy, e.g., for
MPI calls like MPI_Comm_split and wildcard receives. We distinguish them and only consider
application-initiated calls when identifying messages to skip and repeat in Algorithm 1.

2We assume that applications maintain a constant sized thread pool after initialization, e.g., OpenMP
implementations. Cloning applies to the execution phase after such thread pool creation.
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3.6.3 OS Runtime and constraints

Many modern Linux distributions support prelinking, which enables applications with large
numbers of shared libraries to load faster. Prelinking is a method of assigning fixed addresses
to and wrapping shared libraries around executables at load time. However, these addresses of
shared libraries differ across nodes due to randomization. We assume prelinking to be disabled
on compute nodes to facilitate cloning onto spare nodes. Files opened in write mode on a globally
shared directory (e.g., NFS) can cause problems (due to access by both replicas), a problem
considered in orthogonal work [18].

3.7 Job Completion Time Analysis

The objective of this section is to provide a qualitative job completion analysis for redundant
computing to assess the effect of our resilience technique. We make the following assumptions in
the mathematical analysis. (1) Node failures follow a Poisson process. Subsequently, the time
between two failures follows an exponential distribution. (2) Failures occur independently. A
failure does not affect or increase the failure probability of other ranks. (4) Failures do not strike
the two nodes involved in a cloning operation (the source and the spare node) while DINO
recovery is in progress. The short time required for cloning (seconds) relative to time between
failures (hours) allows us to make this assumption. Let us denote:
• t: failure-free execution time of the application (without redundancy)
• r: level of Redundancy
• α: fraction of total application time spent on communication (without redundancy)
• β: fraction of total application time spent on serial communication (with redundancy)
• θ: MTTF of a node (λ = 1/θ: failure rate of a node)
• tclone: time spent on a DINO recovery

Estimating redundancy overhead requires measuring the application’s communication over-
head. We use mpiP [95] to collect such information. The mpiP tool computes “AppTime” and
“MPITime”. “AppTime” is the wall-clock time from the end of MPI_Init until the beginning of
MPI_Finalize. “MPITime” is the wall-clock time for all MPI calls within “AppTime”. It also
reports the aggregate time spent on every MPI call. “SendTime”, “IsendTime”, “RecvTime”,
“IrecvTime” and “WaitTime” are the aggregate times spent on MPI_Send, MPI_Isend, MPI_Recv,
MPI_Irecv and MPI_{Wait,Waitall}, respectively.

We use mpiP with the 1x (no redundancy) execution of the application, collect the information
on communication overhead and then try to estimate the execution time with rx (“r” level
of redundancy). We define α as the fraction of time spent on communication under 1x. The
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α ratio is application specific and also depends on the input data size. α is defined as: α =
MPITime/AppT ime.

Next we consider a redundant computing environment and reason about different types of
communication. Point-to-point MPI calls are always processed serially as r messages are required
to be transmitted. E.g., MPI_Send takes 2 times longer under 2x. However, this depends on
the message size and the transfer protocol deployed dynamically by the MPI runtime (r times
overhead may not be the best estimate under some scenarios). Collective operations, in contrast,
are performed in parallel as we use RedMPI in its optimized collective mode. Under this mode,
collectives are called directly from RedMPI and are internally parallelized. As a result, only
the point-to-point (P2P) segment of the application is performed serially. We define FSend and
FRecv fractions as follows:

FSend = SendT ime+ IsendT ime+ C1 ·WaitT ime

MPIT ime
(3.1)

FRecv = RecvT ime+ IrecvT ime+ C2 ·WaitT ime

MPIT ime
(3.2)

Without non-blocking receives, we fold “WaitTime” into the FSend fraction (C1 = 1, C2 = 0).
Similarly, without non-blocking sends, we fold wait time in FRecv fraction (C1 = 0, C2 = 1).
With both MPI_Isend and MPI_Irecv, we divide the wait time equally between the FSend and
FRecv fractions. (C1 = 0.5, C2 = 0.5). Finally, without non-blocking sends and receives, we assign
C1 = 0, C2 = 0.

We define β as portion of the communication that is performed serially with redundancy: β
is estimating the message transfer overhead. The FSend and FRecv fractions have an inherent
wait (e.g., until the other side’s execution reaches the communication point). A good estimation
is the minimum of the two values as it captures their overlap:

β = min(FSend, FRecv) · α (3.3)

Under redundancy, the serial segment of the communication (β ·t) is multiplied by the redundancy
factor (r) while the rest due to computation and parallel communication ((1−β) · t) remains the
same. In other words, the extra point-to-point communication due to redundancy is performed
serially, but the replicas are performing their computation and collective segments in parallel.
As a result, the execution time with redundancy is estimated as:

Tred = β · t · r + (1− β)t (3.4)

Table 3.2 shows the model validation experiment performed on the Stampede supercomputer.
Stampede nodes are Dell C8220z running CentOS 6.3 with the 2.6.32 Linux kernel. Each node
contains two Xeon Intel 8-Core 2.7GHz E5-processors (16 total cores) with 32GB of memory
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(2GB/core). We choose 5 benchmarks each in 4 configurations: 3 of NPB programs (CG, LU,
MG), Sweep3D (S3D), and LULESH. Sweep3D represents an ASC application that solves a
neutron transport problem. LULESH approximates the hydrodynamics equations discretely
by partitioning the spatial problem domain into a collection of volumetric elements [82]. We
used 1024 and 2048 ranks under dual redundancy for CG, LU, MG and Sweep3D. As LULESH
requires cubic values for the number of ranks, we used 1000 and 1728 ranks. We are interested
in studying the overhead of redundancy in large number of ranks, so we launch one rank per
core (16 ranks per node). Each benchmark is tested with two input sizes, Classes D and E, for
NAS benchmarks. Two configurations of 100×40×400 and 320×40×400 are used for Sweep3D
and size 25 and 27 are used for LULESH. Table 3.2 depicts execution times without redundancy
(1x), α, Send, and Recv fractions from mpiP profiling. Eq. 3.3 is used to compute the β column.
Experimental execution time under redundancy (2x Real), and modeled execution time under
redundancy using Eq. 3.4 (2x Model) are the next two columns.

CG, LU and MG do not have any MPI_Isend call, so we assign C1 = 0, C2 = 1 in Equations
3.1 and 3.2. Sweep3D has no non-blocking calls (C1 = 0, C2 = 0) and LULESH has both
non-blocking send and receive calls (C1 = 0.5, C2 = 0.5). The benchmarks cover 3 of 4 possible
cases. The fourth case (C1 = 1, C2 = 0) is rather uncommon due to penalties associated with it.

Fig. 3.7 compares the real overhead and modeled overhead for the experiments in Table
3.2. The overhead percentage of redundancy is derived from the experiment via 2xReal−1x

1x
(Real Overhead) and by modeling using 2xModeled−1x

1x (Modeled Overhead). The x axis shows
4 configurations of each benchmark numbered from 1 to 4 in the same order shown in Table
3.2. The model error is also shown on the top of the modeled overhead. The results show
overestimation in CG between 1.56% and 6.01%. Our model underestimates the LU benchmark
in all 4 cases between 2.4% to 6.18%. Configurations 1 and 2 of MG are underestimated (3.24%
and 5.75% error) while the other two (3, 4) are overestimated (2.61% and 2.51% error). Sweep3D,
which has no non-blocking calls, has been estimated more accurately (with error between 0.57%
to 2.1%). Finally, overhead for LULESH has been underestimated (between 2.78% and 4.79%).

3.7.1 Discussion

Overall, the presented results show a low model error of at most 6.18%. It also shows that
capturing the overhead of non-blocking calls is more challenging as Sweep3D has no non-blocking
calls and results in the least model error. In the current model, we give equal weight to wait time
in Equations 3.1 and 3.2 when both non-blocking sends and receives exist. A more advanced
profiling technique could separate the wait time spent on Send from Recv and might provide
a more accurate Send and Recv fraction. One could extract such information from the MPI_-

Request data structure and extend mpiP to retrieve fine-grained wait information. One other
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Table 3.2: Experiment vs. modeled execution time under redundancy

# of ranks (problem size) 1x (seconds) α FSend FRecv β 2x Real (sec) 2x Model (sec)
C
G 1024 (Class D) 22.75 .5351 .6755 .3092 .1654 25.5 26.52

2048 (Class D) 13.85 .6507 .6027 .3725 .2423 16.38 17.21
1024 (Class E) 232.62 .2985 .8012 .196 .0585 242.62 246.23
2048 (Class E) 109.04 .4657 .6967 .2987 .1391 119.36 124.21

LU

1024 (Class D) 30.28 .3298 .2159 .7553 .0712 33.79 32.43
2048 (Class D) 26.55 .4621 .1857 .7702 .0858 30.42 28.83
1024 (Class E) 376.80 .1131 .1979 .7942 .0223 394.28 385.24
2048 (Class E) 206.08 .1738 .1887 .7992 .0327 222.39 212.84

M
G

1024 (Class D) 2.28 .3357 .4332 .317 .1064 2.59 2.52
2048 (Class D) 1.45 .5116 .3055 .3594 .1562 1.76 1.67
1024 (Class E) 17.18 .1458 .4903 .4162 .0606 17.77 18.22
2048 (Class E) 9.06 .2342 .3884 .462 .0909 9.65 9.88

S3
D

1024 (100× 40× 400) 28.06 .286 .1139 .7345 .0325 28.81 28.97
2048 (100× 40× 400) 35.39 .3592 .1054 .6893 .0378 35.99 36.73
1024 (320× 40× 400) 88.04 .2821 .1036 .7217 .0292 89.74 90.61
2048 (320× 40× 400) 117.81 .3742 .1289 .6804 .0482 121.39 123.49

LU
LE

SH

1000 (Size=25) 270.82 .2855 .679 .599 .171 288.20 275.45
1728 (Size=25) 328.34 .2885 .72 .631 .182 350.07 334.32
1000 (Size=27) 351.39 .244 .669 .576 .140 371.63 356.33
1728 (Size=27) 448.60 .2533 .719 .689 .174 468.89 456.43

model enhancement is to extract the overhead of each P2P call individually (Oi). Then, the
overall P2P overhead can be computed as β =

∑n
i=1Oi.

3.7.2 Job Completion time with DINO failure recovery

The tclone parameter depends on the application as it is directly related to the process image
size. Moreover, increasing the input size of the application leads to larger data in memory and
eventually larger tclone. The total job completion time is the sum of the time to perform actual
computation (t) and the time to recover from failures.

Ttotal = Tred + Trecovery (3.5)

Let nf be the number of failures that occur till the application completes. On average, a node
failure occurs every θ

n·r . Therefore, nf is calculated as nf = Ttotal · n·rθ or nf = Ttotal · λ · n · r.
Then, Trecovery = nf · tclone. In summary,

Trecovery = Ttotal · λ · n · r · tclone (3.6)

Plugging Eq. 3.6 into Eq. 3.5, the job completion time under redundancy and DINO failure
recovery is estimated as:

Ttotal = Tred
1− λ · n · r · tclone

(3.7)

We use Eq. 3.7 in Section 3.9 for large scale simulations.
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Figure 3.7: Experimental vs. modeled overhead for redundancy – The model error is depicted
on top of the each bar of modeled overhead

3.8 Experimental Results

The node cloning experiments require insertion of our kernel module into the Linux kernel. This
permission is not granted on large-scale supercomputers maintained by NSF or DOE. Thus, we
conducted the experiments on a 108-node cluster with QDR Infiniband. Each node is equipped
with two AMD Opteron 6128 processors (16 cores total) and 32GB RAM running CentOS 5.5,
Linux kernel 2.6.32 and Open MPI 1.6.1. The experiments are demonstrating failure recovery
rather than exploring compute capability for extreme scale due to the limitations of our hardware
platform. Hence, we exploit one process per node in all experiments. Experiments were repeated
five times and average values of metrics are reported.

3.8.1 Live Node Cloning Service.

In this section, we evaluate the node cloning performance at process-level. We compare “CR-
based” node cloning (checkpoint, transfer, restart) with our live cloning approach. We created a
microbenchmark consisting of malloc calls (sbrk system calls) to control the size of the process
image. It has an OpenMP loop with 16 threads long enough to compare the performance of our
node cloning mechanism with Checkpoint/Restart(CR). In CR, we checkpoint the process locally,
transfer the image to another node and then restart the snapshot (using off-the-shelf BLCR). We
omit the file transfer overhead and consider the best case for CR (checkpoint and restart locally).
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Table 3.3 shows the results for different image sizes ranging from 1GB to 8GB. Our cloning
approach takes less time than just checkpointing only without restart. It is more than two times
faster than CR in all cases (2.24x for 1GB and 2.17x for 8GB). Cloning is performed via TCP
over QDR Infiniband with an effective bandwidth of 300 MB/s. The speedup of our approach is
due to creating the process while copying the process image. As a result, we parallelize the two
steps that are serial in CR. Furthermore, we do not use the disk but instead transfer memory
pages over the network.

Table 3.3: Microbenchmark performance (in seconds) of process cloning vs CR (Process with
16 threads)

Process Image Size Cloning Checkpoint Restart Total CR Speedup ( CR
Cloning

)
1GB 12.42 14.98 12.85 27.83 2.24
2GB 26.11 29.79 25.63 55.42 2.12
4GB 49.58 59.79 50.39 110.36 2.22
8GB 100.94 119.10 100.20 219.3 2.17

3.8.2 Overhead of Failure Recovery.

In this section, we analyze the performance of DINO. We consider 9 MPI benchmarks: (BT,
CG, FT, IS, LU, MG, SP) from the NAS Parallel Benchmarks (NPB) plus Sweep3D (S3D)
and LULESH. We use input class D for NPB, size 320× 100× 500 for Sweep3D and size 250
for LULESH. We present results for 4, 8, 16 and 32 processes under dual redundancy (CG,
IS, LU, MG). We use 4, 9, 16, 25 processes for BT and SP (square numbers are required by
the benchmark). FT with 4 and 8 processes could not be executed due to memory limitations.
LULESH only runs with cubic numbers of processes, so we run it with 9 and 27 processes. Due
to lack of support from the Infiniband driver to cancel outstanding requests without invalidating
the whole work queue and lack of safe re-initialization, current experiments are performed
with marker messages. Every process receives a message indicating the fault injection and acts
accordingly. One rank mimics the failure by performing a SIGSTOP. Then the Cloning APIs are
used to start the clone procedure and the discussed steps in Section 3.4 are performed: Pre-copy,
Quiesce, Clone, Resume.

Fig. 3.8(a) and 3.8(b) depict the overhead and transferred memory size, respectively. NPB
are strong scaling applications and the problem size is constant in a given class. Therefore, the
transferred memory size and consequently time decreases when the number of processes increases.
In contrast, Sweep3D and LULESH are weak scaling and the problem size remains constant for
each process, solving a larger overall problem when the number of processes increases. Thus,
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weak scaling benchmarks show negligible difference in overhead and transferred process image
size over different number of processes.

FT has the largest process image. The size of memory for FT with 16 processes is 7GB and
takes 90.48 sec to transfer, while it takes 46.75 seconds with 32 processes to recover from a
failure when transferring 3.52GB of memory. LU has the smallest process image among NPB,
its memory size ranges from 2.64GB to 0.36GB with transfer times of 32.51 to 5.60 seconds for 4
to 32 processes, respectively. For Sweep3D, the overhead is almost constant at 23.5 seconds over
different numbers of processes when transferring a 1.8GB image. The same applies to LULESH
with a constant process image size of 2.75GB and an overhead of 38.51 seconds.3 The relative
standard deviation in these experiments is less 7% in all cases.

We also measure the time spent in each phase: pre-copy, quiesce, clone and resume for
32 processes except for LULESH, where 27 processes are used (see Fig. 3.8(c)). The pre-copy
phase is shown on the left axis, and the rest of phases are shown on the right axis which is
an order of magnitude smaller. The majority of time is spent in the pre-copy phase and the
remaining three phases take about 1 second combined. These three phases take almost similar
time across all the benchmarks with only small variations. In our experiments, we observed that
shortly after the fault injection, a deadlock occurs. Other processes wait for the completion of a
communication with the failed process and this will eventually create a chain of dependencies
among all processes. The Quiesce phase of the DINO recovery resolved this problem successfully.
Due to early deadlock occurrence, the overlap of the normal operation with the pre-copy phase
was negligible for the chosen benchmarks.

3.9 Simulation Results

3.9.1 Size of Spare Node Pool.

This section analyzes the effect of cloning on the average number of required spare nodes to still
complete a job. Assume each node has a MTTF of 50 years. On average, every MTTF/(r× n),
a node fails in the system. Further, assume r = 2 and T = 200 hours. The time to complete the
job with β = 0.2, 0.4 and 0.6 can be calculated using Eq. 3.7. We consider large values for β to
study the node pool size in more extreme cases where redundancy has larger overhead. Table 3.4
indicates the number of spare nodes required for successful job completion for different values of
n ranging from 18 (n = 16K, β = 0.2) to 465 nodes (n = 256K, β = 0.6). In this case, we did
not consider any repair for the system (MTTR =∞).

3 In the current implementation, the memory is copied one page at a time. This lowers the performance of
the cloning operation. A larger buffer size might increase the performance as the effective bandwidth could be
increased.
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If we consider a Mean Time to Repair (MTTR) of 20 hours, the required number of spare
nodes is shown in the last column of Table 3.4. We observe that the average number of spare nodes
is ranging from 2 to 25, which is only a small fraction of total number of nodes. Assuming that
nodes are repairable, the average number of required spare nodes turns out to be independent
of the β value. For example, consider n = 64K. When β = 0.2, the job takes 252.28 hours, and
we have b252.28/20c = 12 repair intervals. Similarly, for β = 0.4, there are b283.45/20c = 14
repair intervals, and for β = 0.6, there are b336.38/20c = 16 repair intervals. If we divide the
number of required spare nodes by the number of repair intervals, we obtain a bound on the
number of required spare nodes. This value is d74/12e, d86/14e and d99/16e for β = 0.2, 0.4
and 0.6, respectively. In all three cases, 7 spare nodes are required. Similar conditions hold for
the rest, meaning that results are independent of β.

Table 3.4: Avg. number of required spare nodes

MTTR = ∞ MTTR = 20h
Size (n) β = 0.2 β = 0.4 β = 0.6 β = 0.2, 0.4, 0.6
16000 18 21 24 2
32000 36 42 48 3
64000 74 86 99 7
128000 156 182 208 13
256000 349 407 465 25

3.9.2 Job Completion Time.

Next, we study the behavior of different methods at extreme scale. Plain job execution time (t)
is 256 hours and β varies from 0.1 to 0.4. We use Eq. 3.7 to extrapolate the job completion time
with DINO recovery. Under redundancy, we only re-execute the job upon job failure (when both
replicas fail) and use the following equation [48]: Ttotal = (D+ 1

Λ)(eΛTred − 1) where D is time to
re-launch the job (assumed to be 2 minutes), and Λ is the system MTTF (Λ = − ln(Rsys)/Tred).
Rsys is the overall system reliability and can be computed as: Rsys = (1− (Tred/θ)r)n×r [51].

Three solutions are studied: dual redundancy (2x), 2x with DINO recovery (2xD), and triple
redundancy (3x). The cloning overhead is 2 minutes since only a single node pair is involved in
cloning. We choose a node MTTF of θ = 50 years. Fig. 3.9 shows the job completion time for
systems with different numbers of nodes ranging from 10K to 2M. 2x is the dashed line, 2xD is
the solid line, and 3x is the dotted line. Based on the results from Table 3.2, we choose β = 0.1
and 0.2 in this experiment. Fig. 3.9(A+B) depict the results for β = 0.1 and 0.2. A zoomed view
of the area of interest is shown on the top of each plot. This area is 10K to 500K in Fig. 3.9(A)
and 10K to 1M in Fig. 3.9(B). 2xD outperforms 3x for up to 540K and 940K nodes for a β of
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0.1 and 0.2, respectively. After this point, 3x provides shorter job execution times due to DINO
recovery overhead for every failure, but this range is likely beyond the size of exascale systems.
For β = 0.1, 2x is between 282 to 719 hours. This changes to 308.72 to 960.99 hours for β = 0.2.
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Figure 3.9: Modeled job completion time
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3.9.3 Vulnerability Window.

Our experimental evaluation in Section 3.8 showed that for typical HPC application, the DINO
recovery time is in order of seconds to less than 2 minutes (depending of the application footprint
per process). In this section, we reason about the probability of experiencing a soft error during
the vulnerability window under dual redundancy. Suppose the vulnerability window is w, and
the execution time per rank is Tp (total: 2 ×N × Tp). Assume that at some point of time, a
process fails and there are currently 2×N − 1 active process. The probability of a soft error
hitting the application during w is w/2 ×N × Tp. Assuming w = 2 minutes, Tp = 100 hours
and N = 1 million nodes, this probability is very small (1.65e−10). As a result, the effect of the
vulnerability window on the correctness of application result is negligible.

3.10 Related Work

Our earlier work [106] provides stochastic modeling and simulation results for a system based
on redundancy and process cloning. This chapter presents the design and implementation of
a node cloning service, the Quiesce algorithm, an experimental evaluation with fault injection
and a model for job completion time under redundancy. rMPI [22] and MR-MPI [55] provide
transparent redundant MPI computing. Elliott et al. [51] determines the best configuration of a
combined approach including redundancy and CR. They propose a model to capture the effect
of redundancy on the execution time and checkpoint interval. Ferreira et al. [57] investigate the
feasibility of process replication for exascale computing. A combination of modeling, empirical
and simulation experiments is presented in this work. PLR [121] provides transparent process
redundancy and is capable of detecting soft errors. None of the above works deal with replica
failures and only focus on providing replication capability. Our work addresses hard replica
failures and solves the consistency problem in the MPI environment during failure recovery.

A process-level proactive live migration approach is presented in [131] with an integration
within LAM/MPI. VMware Workstation [130] provides virtual machine migration and cloning.
In cloning, a snapshot of the VM is created. The cloned VM is independent from the main VM.
Clones are useful when one must deploy many identical virtual machines in a group. Cloning in
VMs is mainly to avoid the time-consuming installation of operating systems and application
software. Unlike DINO, prior work does not handle (a) new process/thread creation with the
same progress but a different identity, (b) compensation for divergence in progress, and (c)
techniques to limit divergent scopes.
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3.11 Conclusion

We introduced DINO, a quick forward recovery method from failures in redundant computing.
DINO contributes a novel live node cloning service with a scalable multicast variant of the
bookmark algorithm and a corresponding Quiesce algorithm for consistency among diverging
communicating tasks. With its integration into the MPI runtime system, DINO allows a
redundant job to retain its redundancy level via cloning throughout job execution. Experimental
results with multiple MPI benchmarks indicate low overhead for failure recovery. A model for job
for redundant computing indicates that dual redundancy with cloning (DINO-style) outperforms
triple redundancy up to 0.5-1M nodes depending on the communication to computation ratio,
which is the range relevant to exascale computing. This means node failures can be tolerated
by forward recovery with DINO with sustained resilience levels due to live cloning. In future
work, SDC could also be detected (without correction) by DINO at 33% lower power than triple
redundancy.
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Chapter 4
End-to-End Application Resilience to
Protect Against Soft Errors

4.1 Introduction

Fault resilience remains a fundamental problem in computing, and especially parallel computing.
Bit flips, operating system (OS) errors, hardware faults, and their manifestation as application
failures are an inherent part of computing systems at scale. One can try to alleviate the
consequences by compensating with re-computation or redundancy. However, the traditional
approaches need improvements and innovations as the future exascale systems are projected to
more frequent failures. It has been estimated that an increase in the frequency of faults in exascale
systems can be prevented at the cost of 20% more circuitry and energy consumption [122].
However, the hardware vendors do not tend to design and build specific hardware due to
manufacturing costs. As a result, the future systems will be likely built with off-the-shelf
components while delegating a significant part of the resilience responsibility to the software
layer.

Fault resilience techniques enable application completion with correct results despite the
existence of multiple sources of faults and their possible occurrence in the system. The significance
of resilience in future HPC systems has been emphasized in prior research [122, 26, 42, 29].
HPC systems are particularly interesting to study as multiple challenges arise from the size
(millions of cores) and the programming model (tightly coupled). Intuitively, larger numbers of
components result in a higher probability of failures. Moreover, a tightly coupled programming
model may result in fast fault propagation after just one node has been hit [59]. On the top of
that, the software layer (concurrency, bugs) is anticipated to become even more complex [10].
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As a result, resilience is considered a major roadblock on the path toward next-generation HPC
systems.

Recent innovations in the hardware, such as deep memory hierarchies and heterogeneous cores,
provide a performance boost at the price of adding to system complexity. Persistent memory
technologies like Phase Change Memory (PCM), magnetic RAM (MRAM), and Memristors are
positioned to be placed as burst buffers between DRAM and storage to alleviate the speed gap
using a non-volatile abstraction. Application programmers are required to take new parameters
into account to fully exploit the performance of novel hardware. As a result, multiple performance
metrics need to be taken into account while developing software.

Application programmers often spend a considerable amount of time on choosing and
incorporating one or multiple resilience methods into their application. They might need to
re-write their application in a specific programming model with Containment Domains [37],
GVR [137], Charm++ [80], GMRES inner/outer solver [112], or PERM [132]. Thus, the trend
is to add resilience on a per application basis, i.e., vector dot product with GMRES [52],
LULESH [82] and NAMD [102] with Charm++, or LULESH and LMAT [5] with PERM. One
of the problems in such approaches is code complexity due to interleaving the algorithmic and
resilience concerns such that these disjoint goals are hard to identify inside the program, let
along to maintain such programs from there on.

As performance and resilience requirements are pushed to the software layer, the software
complexity and consequently portability/maintainability become problematic. We argue that a
systematic resilience approach is much more effective, especially for future complex systems.
This allows the application developer to focus entirely on algorithms and performance and
delegate the resilience requirements for seamless protection to the system (library/ runtime).
Thus, devising a unified API specifically crafted for end-to-end resilience is the objective of
this work, which is motivated by the aspect-oriented programming (AOP) paradigm [83], an
approach that aims to increase modularity by allowing the separation of concerns. AOP includes
programming methods that support the modularization of concerns (goals) at the source code
level.

Hukerikar et al. [68] promote a redundant multithreading integrated as an OpenMP pragma
that allows for soft error detection. Our work not only addresses redundant computing but also
supports a broader range of resilience methods with an end-to-end resilience goal. Chen et al.
[34] propose a tool named ErrorSight to pinpoint data structures that are most vulnerable to
soft errors. They use a model to generate error profiles and discover propagation patterns. The
overall goal is to help the application developers to focus their efforts on most vulnerable code
regions. Their work is orthogonal to ours in the sense that after detecting such regions, our API
could be used to protect the data.

This work makes the following contributions:
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• We present a systematic approach for end-to-end resilience with minimal assistance from
the application developer. We separate the resilience aspects from the algorithmic side of
computation aiming for portability and modularity of HPC codes.

• In end-to-end resilience, checks and appropriate recovery methods are automatically
inserted into the application source code and a computationally equivalent code is generated
that is fault resilient. In case studies, we demonstrate the applicability of our approach
and its benefit over conventional resilience techniques.

• We show that the overhead for check/recover methods in a sequentially composed numeric
kernel is negligible while the overall space overhead is less than 1% for per matrix checksums
and less than 7% for per-block checksums.

• Our experimental results show that check/recover methods in a code that combines MPI
with end-to-end resilience results in less than 7% overhead resulting in an overall overhead
of 14− 16% compared to no resilience.

The chapter is organized as follows: Section 4.2 discusses the background and related
work. Section 4.3 states the assumptions. Section 4.4 introduces our end-to-end resilience
using a pragma-based and a task-based implementation. Section 4.5 presents case studies and
experimental results. Section 4.6 summarizes the work.

4.2 Background and related work

4.2.1 Failures

Let us present a brief overview of the terminology used in this Chapter. Avizienis et al. [11]
define faults as the cause of errors. Errors, in turn, may lead to failures. Faults occur at the
system level, i.e., a physical phenomenon may adversely affect the hardware or its interactions
between various components. If the erroneous component is part of a service and there is no
built-in correctness approach, an error leads to a failure, which manifests itself as an incorrect
result, crash or interruption in service. Failures are further distinguished by their origin into
hardware and software failures.

Hardware Failures

Hardware faults could be persistent or transient. Persistent faults are typically due to aging or
operation beyond temperature thresholds and maybe mitigated by replacement of the failed
component or marking, e.g., of pages with sticky bits. Failures due to persistent faults interrupt
the user application. They may render a HPC job of thousands of processes useless.
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Transient hardware errors are often called soft errors. Cosmic radiation is traditionally
considered to be a major cause for transient hardware errors. When high energy neutrons
interact with the silicon die, a secondary cascade of charged particles emerges. The resulting
pulse is powerful enough to change the stored bits in memory (DRAM or SRAM). However,
this depends on the size of transistors. Smaller transistors carry smaller charges. Consequently,
multiple bit flips become more likely to manifest [10]. Transient errors need not stop the
application from making progress. (In fact, fail-stop on double bit flips was deliberately disabled
in the BIOS os some HPC machines, at least for Linpack runs.) They allow the application
to continue execution, albeit with tainted data. Such faults manifest as bit flips in the data in
memory or anywhere in the data path (e.g., caches, data bus). Although CPU registers, caches,
and main memory are often equipped with ECC, only single bit flips are correctable (by ECC or
chipkill) while double-flips generally are not (by SEC-DED ECC while chipkill can correct some
multi-bit errors depending on their device locality). 1 Jaguar’s 360TB of DRAM experienced
a double bit flip every 24 hours [61]. With ECC/chipkill, end-to-end resilience complements
hardware protection. Some soft errors may remain undetectable and may result in so-called
Silent Data Corruption (SDC). SDCs may manifest at application completion by producing
wrong results or, prior to that, wrong interim results. A study at CERN raised concerns over
the significance of SDC in memory, disk and RAID [101]. Their results indicated that SDC rates
are orders of magnitude larger than manufacture specifications. Schroeder et al.’s study [119]
of the DRAM errors on large-scale platforms over the course of 2.5 years concludes that more
than 8% of DIMMs are affected by errors per year. Schroeder’s findings are refined by Sridharan
et al. [125] in a detailed analysis on the effectiveness of hardware techniques, namely ECC
and chipkill. A study by Microsoft over 1 million consumer PCs also confirms that CPU faults
are frequent [97]. There is a lack of extensive experiments and estimations of the SDC rate in
current systems. Their future effect on exascale systems remains unknown. A recent report [122]
recommends for more research to be conducted on SDC rates and considers refinements in
hardware to keep SDC rates low or exploit software methods to detect and correct SDCs. Li
et al. [87] protect resources (e.g., registers), instructions, and control flow in GPUs using JIT
technqiues. In contrast, we protect an entire data structure (could be several GB of memory),
which they cannot.

Software Failures

Software failures can be due to bugs [39] (some of which may only materialize at scale), complex
software component interactions, and race conditions that surface only for rare parallel execution
interleavings of tasks. Moreover, application codes are also becoming ever so more complex with

1 Bit flips in code (instruction bits) create unpredictable outcomes (most probably segmentation faults or
crashes) and are out of the scope of this work.
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the need to reduce communications and improve asynchrony. The resulting algorithms have
higher performance but often become more error-prone [10]. In fact, it has even been predicted
that large parallel jobs may experience a failure every 30 minutes on exascale platforms [122].

4.2.2 Resilience Methods

Resilience methods usually compensate for the computation/state loss by performing a backward
or forward recovery. Backward recovery recreates an older state of an application through classic
rollback recovery methods, such as system-level or application-level checkpoint/restart. Forward
recovery typically handles errors by repairing the affected data structures. A correction procedure
is invoked that may recover the intended values from a peer replica (redundant computing) or
from checksums.

Application Based Fault Tolerance (ABFT)

ABFT methods can be used to tolerate transient hardware errors (bit flips). These methods rely
on a deep understanding of the problem and exploit an inherent property/invariant specific to
an algorithm/a data structure to recover from errors. Methods for matrix multiplication [67, 35],
matrix factorization [47], Cholesky decomposition [36], and sparse linear solver [120] have been
proposed. Results indicate that each method may have its merits based on the algorithm/data
that it protects, which implies that future systems may use a mix of alternating methods per
phase throughout application execution.

Checkpoint/Restart (CR)

Applications are periodically checkpointed, and their state are written to persistent storage.
Upon failure, the application is rolled back to the last checkpoint (backward recovery), its
state is retrieved from storage in all tasks, and execution resumes from this point. Multiple
improvements have been proposed to alleviate the overhead of CR. Data aggregation [73]
and data deduplication [17] shrink the checkpoint size, while in memory [136] and multi-level
checkpointing [94, 14] improve the scalability and speed of CR.

Redundancy

Another resilience method is redundant computing [22, 57, 55, 59]. It aims at improving reliability
and availability of systems by allocating two or more components to perform the same work. A
recent study [91] showed that redundancy could be a very viable and even cost-effective approach
for HPC on the cloud. Their approach to combine checkpointing and redundancy on Amazon
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EC2 using a variable-cost spot market provides up to 7 times cheaper execution compared to
the on demand default market.

Many HPC applications are comprised of multiple kernels that form a multi-phase pipeline.
The above-mentioned methods are resilient to one or multiple types of faults with different
overhead. Intuitively, there is no single solution that fits all scenarios while providing the
best performance. Thus, a combination of methods enables the selection of the best resilience
mechanism per application phase considering factors such as computation time and size of data
that needs protection.

Vulnerabilities

Multiple metrics are commonly used to evaluate the failure of systems. The Failures in Time
(FIT) rate is defined as a failure rate of 1 per billion hours. FIT is inverse proportional to
MTBF (Mean Time Between Failures). The Architectural Vulnerability Factor (AVF) [124] is
the probability that a fault (in microprocessor architecture) leads to a failure (in the program),
defined over the fraction of time that data is vulnerable. The Program Vulnerability Factor
(PVF) [123] allows insight into the vulnerability of a software resource with respect to hardware
faults in a micro-architecture independent way by providing a comparison among programs with
relative reliability. The Data Vulnerability Factor (DVF) [134] considers data spaces and the
fraction of time that a fault in data will result in a failure. DVF takes into account the number
of accesses as a contributor to fault occurrence. We introduce the term Live Vulnerability Factor
(LVF) defined as:

LV F = Lv × Sv,
where Lv is the (dynamic) length of the live range of an arbitrary data structure/variable v
(vulnerability window), and Sv is the space required to hold the related data in memory. Length
is measured as wall-clock time from the first set to the last use (live range) of a variable during
execution. LVF takes into account time × space, which covers the effect of soft errors. Our
metric is agnostic to architectural aspects of a processor (covered by AVF) and their impacts on
programs (see PVF). It is also agnostic of the number of references (unlike DVF) as it considers
both (a) written, incorrect results and (b) SDCs that may occur, even in the absence of write
instructions (which others do not).

4.2.3 Fine-grained Task-based Scheduling

Task-based scheduling is an old concept in computing and has been extensively studied for multi-
cores, e.g., in [33, 6]. The base idea is to assign resources to tasks until they complete. Multiple
metrics have been taken into account to assess the performance of schedulers, e.g., maximizing
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throughput [92, 86], minimizing response time (or latency) [31, 32], guaranteeing deadlines
[7, 44, 76], and maximizing fairness [8, 85]. Almost all of these metrics are performance-driven.

A Directed Acyclic Graph (DAG) is a generic model of a parallel program consisting of a
set of tasks and their dependencies. A scheduler could traverse the DAG with a depth-first or
breadth-first policy, or a combination or them. Generally, a high performance scheduler traverses
a DAG in a way to minimize memory demands and cross-thread communication. Depth-first
best exploits the cache locality and reduces memory demands, while breadth-first maximizes
parallelism assuming an infinite number of available physical cores [1]. Breadth-first scheduling
has the potential to lengthen the vulnerability window if it triggers new loads. As an example,
consider a wide DAG, where task dependencies are rooted in data pipelines extending from a
parent to a child. In a breadth-first schedule, the data of all parents across a level is live and
vulnerable, which can be significant in size and may increase fast. In a depth-first schedule,
only the data along the currently executing subtree branches is live, which is often significantly
smaller.

Work stealing is a scheduling strategy where a thread grabs a task from the bottom of
another thread’s work stack (the oldest task). Multiple scenarios could occur with regard to the
vulnerability window. If data is no longer needed beyond the “stolen” task, the window may
shrink. If new loads are triggered, the actual impact depends on the subsequent actions, i.e.,
how long a task will be queued until its next execution (for temporal locality). We discuss the
integration of end-to-end resilience into (a) OpenMP-based tasking and (b) task-based runtime
systems before contrasting both.

4.3 Assumptions

We assume that the correctness of a data structure can be verified (through a Checker method)
and the stored values can be recovered through a Recover method should an inconsistency be
detected. Many algorithms commonly used in HPC, such as numeric solvers, have approximation
methods based on convergence tests. These convergence tests could be used as the Checker. If
an algorithm lacks a simple checking method or invariant, the Checker can be provided through
comparison with a checksum over the data that was computed beforehand and stored in a safe
region.2 The Recover method can be supplied through the forward recovery phase in ABFT
methods, or simply by restoring a light-weight deduplicated [17] or compressed [73] checkpoint
of the data.

2Extra checks are added to guarantee the correctness of data stored in a safe region. A safe region is assumed
to neither be subject to bit flips nor data corruption from the application viewpoint — yet, the the techniques to
make the region safe remains transparent to the programmer. In other words, a safe region is simply one subject
to data protection/verification via checking.
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We further assume that the computation is idempotent with respect to the encapsulated
region, i.e., if global data structures are changed inside the region, they have to be restored by
the recovery method. In other words, if a method/region is called twice in a row, the result
would be the same as the inputs (or global variables) remain unmodified by the computation (no
side effects). This programming model does not restrict the application programmer significantly.
(After all, any algorithm can be expressed in a functional language without side effects.) Yet,
it allows the design of algorithmic solutions that are easier to read, debug and extend. This
assumption ensures that we can retry a computation if needed, i.e., when no other recovery
method exist (or if the other recovery methods have failed). We also allow communication inside
regions (see Section 4.4.1).

4.4 End-to-End Resilience

Applications are typically composed of phases during which different algorithmic computations
are being performed. Intermediate results are created and passed from phase to phase before
the final result is generated. Our core idea is to exploit the live range of variables within and
across phases, and to immediately perform a correctness check after the last use of any given
variable. Live range analysis is a well-understood technique employed by compilers during code
optimization, such as register allocation (among others). Fig. 4.1 depicts the overall idea. Based
on the result of the check, either no action is taken (correct results), or the correct values are
recovered (if detected as erroneous), or re-computation is performed (if erroneous but direct
recovery has failed). The intuition here is to avoid the high overhead of frequent checks (e.g.,
after every use) while providing a guaranteed end-to-end correctness of the computation.

Assume a simple computation as follows:
{x1, ..., xk} ← compute(z1, ..., zn),

where compute is the last use of z1, ..., zn. The transformed resilient code is depicted in Fig. 4.2.
A boolean array of size n is defined to hold the result of Checker methods on z1, ..., zn. After the
compute call, each of the inputs z1, ..., zn is checked and recovered if necessary. For simplicity,
we assume that z1, ..., zn cannot be recomputed in this example.3 Thus, if the recovery fails, an
exception will be thrown.

4.4.1 The Resilience Pragma

We propose a pragma-based resilience scheme for different types of control-flow constructs
and show how the corresponding code is expanded to provide the extra end-to-end protection.
Pragmas are introduced to indicate which boundaries should be protected and how protection

3In the next section, the recomputation case is addressed.

75



x0
x1

x3

x2Check

Init

Method	1 Method	2

Method	3

…

…

Check
Check

Check

Fin

Figure 4.1: The control flow of an application with different variables in the source code and
their live ranges is indicated by the arrows. A check is performed at the end of each live range
to verify the correctness of the variable’s value.

bool check[n];
do{
{x1, ..., xk} = compute(z1, ..., zn);
if(!(check[0] = Checker(z1)))

if(!Recover(z1))
throw unrecoverable;

...
}while(!check[0] || ... || !check[n]);

Figure 4.2: Code with checks

shall be realized. This allows us to cover the vulnerability window of different variables by
automatically expanding codes through the compiler. The expanded code performs check and
recovery actions on the vulnerable data. The recovery pragma has a simple, yet powerful and
extendable interface with the following syntax:

#pragma protect [M ] [Check(f1, ..., fn)] [Recover(g1, ..., gm)]

[Comm] [Continue]

where the resilience method, M, CR or Redundancy (2/3) (dual/triple), is an optional argument.
Check and Recover receive a list of functions parameterized by each variable that needs
protection. We use f to denote a checker, and g for a recovery method. A region that contains
communication is annotated with the Comm keyword. The Continue keyword indicates that data
is live beyond the current region, i.e., crossing phases, and requires end-to-end protection. At
first, we focus on the control flows for the Continue keyword. We later discuss the resilience
methods (M) in Section 4.4.1 and Comm in Section 4.4.1.
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Fig. 4.3 (upper part) depicts three types of conventional flows: sequential (pipelined), data
merge (join), and split (conditional) composition. Fig. 4.3(a) is a pipeline of data dependent
compute phases. A set of independent computes is followed by a reduction dependent on previous
outputs depicted in Fig. 4.3(b), and a set of conditional assignments based on predicates is
shown in Fig. 4.3(c). All of these cases feature data flow across pragma regions (as indicated by
the Continue keyword).

If an error strikes during the lifetime of phase-dependent variables, conventional resilience
methods cannot provide any assistance as they are locally constrained to region boundaries.

The snippet in the lower part of Fig. 4.3 outlines the high-level representation of the final
code. First, each compute method is transformed following the approach discussed in Fig. 4.2.
These examples illustrate how the dependencies (Continue keyword) are considered in the code
transformation. Sequential composition (Fig. 4.3(a) is turned into a nested structure. At the end
of every compute, a corresponding completed flag is set. If a check fails on a data structure and
the recovery also fails, then the related completed flag will be reset to repeat that computation.
Note that the check/recover methods are not shown here as they are part of the generated code
for each compute region. Fig. 4.3(b) (lower part) shows the composition for joining data flows.
The code is organized in two levels of nesting. The completed flags are set after every compute
method and in the generated code for computen. If check and recover for any of the x1, ....xn− 1
cases fail, then the respective completed flag is reset to trigger a recomputation of that specific
data. Fig. 4.3(c) (lower part) depicts the transformed conditional composition. The conditions
are directly expanded in the generated code to select the computation based on the respective
predicate.

Integration with Resilience Methods

The protect pragma also supports resilience methods like CR and Redundancy. We perform
the code transformation in two steps. At first, the pragma region with CR or Redundancy is
transformed to an intermediate code that still contains the pragma, but the CR or Redundancy
part is already expanded.

Fig. 4.4-(top) depicts a pragma with CR. The intermediate pragma code is shown in Fig. 4.4-
(bottom). Create_ckpt takes a checkpoint of data and Restore recovers x0 from the checkpoint.

Fig. 4.5-(top) depicts a pragma with the Redundancy keyword. The intermediate code is
depicted in Fig. 4.5-(bottom). Init and Fin initialize and finalize a shadow process, respectively,
for dual redundancy. 4 The routines wake_up_shadow and sleep_shadow indicate to the shadow

4A pool of shadow processes is dynamically maintained to avoid re-spawn costs.
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User code
#pragma protect Check(f0(x0)) Recover(g0(x0)) Continue

x1 = compute1(x0);
#pragma protect Check(f1(x1)) Recover(g1(x1)) Continue

x2 = compute2(x1);
...
#pragma protect Check(fn−1(xn−1), \

Recover(gn(xn−1))
xn = computen(xn−1);

Generated pragma expanded code
bool completed[n];
while(!completed[n− 1]){

...
while(!completed[1]){

while(!completed[0]){
//generated code for compute1
completed[0] = true;
}

//generated code for compute2
completed[1] = true;
}

...
}

(a) Sequential

User code
#pragma protect Check(f1(z1)) Recover(g1(z1)) Continue

x1 = compute1(z1);
#pragma protect Check(f2(z2)) Recover(g2(z2)) Continue

x2 = compute2(z2);
...
#pragma protect Check(f1(x1), .., fn−1(xn−1)), \

Recover(g1(x1), ..., gn−1(xn−1))
xn = computen(x1, ..., xn−1);

Generated pragma expanded code
while(!done){

bool completed[n];
while(!completed[0]){

//generated code for compute1
completed[0] = true;
}
while(!completed[1]){

//generated code for compute2
completed[1] = true;
}
...
//generated code for computen
}

(b) Join

User code
#pragma protect Check(f1(z1), ...),\

Recover(g1(z1),...)
if cond1

x1 = compute11(z1, ...);
else if cond2

x1 = compute12(z1, ...);
...
else

x1 = compute1k(z1, ...);
Generated pragma expanded code

if(cond1)
//generated code for compute11

else if(cond2)
//generated code for compute12

...
else

//generated code for compute1k

(c) Split

Figure 4.3: Resilience pragma for end-to-end protection of kernels: (a) Sequential, (b) Join, and
(c) Split. The pragma-based user code is depicted in upper part and the code generated from
pragma expansion is shown in lower part

#pragma protect CR Check(f0(x0))
x1 = compute1(x0);

Create_ckpt(x0);
#pragma protect Check(f0(x0)),Recover(Restore(x0))

x1 = compute1(x0);

Figure 4.4: Pragma with Checkpoint/Restart (top) and its intermediate code generated from
the pragma (bottom).

process that it shall start / stop the computation, respectively. .5 Execution between primaries
and shadows is coordinated using RedMPI [59].

5The former sends a wake_up signal from the the main process, the latter blocks on a port awaiting this signal
while a shadow process is inactive.
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#pragma protect Redundancy(2) Check(f0(x0)),\
Recover(g0(x0))

x1 = compute1(x0);
Init(); // creates a shadow process

// sets the communicator,...
...
wake_up_shadow(); // primary wakes up shadow
#pragma protect Check(f0(x0)), Recover(g0(x0))

x1 = compute1(x0);
sleep_shadow(); // primary puts shadow to sleep
...
Fin(); // finalizes the shadow process

Figure 4.5: Pragma with Redundancy on top, generated (expanded) code with its pragma is
shown on bottom

Regions with Communication

Recovery from regions that involve communication with other processes requires special care.
Two approaches are feasible: (1) For message logging [78], multiple protocols have been proposed
to log sent/received messages and to perform recovery without coordination with peer MPI tasks.
(2) By aggregating the check results, if any of the checks failed, a recovery with recomputation
is required, where all the required peer MPI tasks participate in the recomputation. To this
end, a Comm keyword is added to the pragma to indicate that communication exists inside that
pragma region.

4.4.2 Task-Based Resilience

An alternative to the pragma approach is to design a task-based programming scheme that
implicitly provides end-to-end resilience. Tasking libraries are becoming more popular in the HPC
community due to their more graceful load balancing and potentially asynchronous execution
models, e.g., PaRSEC [20], OmpSs [50], the UPC Task library [74], and Cilk. Attempts have
been made to add resilience to PaRSEC [24] and OmpSs [93]. PaRSEC focuses on soft errors,
i.e., they take advantage of the algorithmic properties of ABFT methods to detect and recover
from failures at a fine grain (task level) and utilize periodic checkpointing at a coarse grain
(application). OmpSs uses CR and message logging at the task granularity to tolerate faults
with re-execution.

Instead of focusing on a specific resilience approach, we target a more complex problem. We
propose a tasking system that allows for different resilience methods to interact in an easily
understandable and extendable manner. Fig. 4.6 depicts the overall idea where a Resilience_-

pre() and a Resilience_post() are inserted before and after the task code. These methods
implement CR, redundancy, and the necessary checks after the last use of a data structure.

79



Task	code

Resilience_pre()

Resilience_post()

Checkpoint (if CR)

wake_up_shadow (if Redundancy)

Sleep_shadow (if Redundancy)

Check() 
If failed à Recover() à Calculate the tasks 
that needs to be re-launched

Figure 4.6: A task with the resilience code before and after

Resilient Task Objects

Fig. 4.7 depicts the class declaration of a resilient task. Resilience is provided through two
methods that are called before and after the actual execution of a task, namely resilience_pre,
resilience_post. In resilience_pre, depending on the resilience type of the task, CR or
Redundancy, the checkpoint method or wakeup_shadow is called, respectively. In resilience_-

post, first the shadow process is put to sleep for under redundant execution. Then data structures
that have their last use in the task are checked and corrected if needed. If the correction fails, a
list of tasks are put into the scheduling queue to recompute the tainted data structures.

Fig. 4.8 shows the code skeleton for the resilient task. The resilience_pre and resilience_-

post methods are called before and after running the task and the results of execution are
returned.

4.5 Case Studies and Results

We present examples of pragma- and task-based end-to-end resilience for two programs, matrix
multiplication and a page ranking program, followed by experimental results.

4.5.1 Sequentially Composed Matrix Multiply

Computing a series of matrix multiplications is a problem that involves long ranges of live data
and computational dependencies. This is an interesting test case to study conventional resilience
properties and demonstrate how end-to-end resilience can improve on conventional methods.
Fig. 4.9 shows the multiplication of three matrices (A×B ×D), with the final result stored in
matrix E.

The vulnerability windows for each variable are shown on right as ranges with arrows. Matrix
A and B are vulnerable during the first multiplication, D is vulnerable during the second
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1
2 class resilient_task_t {
3 struct result_t {
4 bool status ; // SUCCESS or FAIL:
5 vector <void ∗>failed_list ;
6 };
7
8 task_t∗ task;
9 vector <void (∗)() > Check ; // list of Checker funcs .
10 vector <void (∗)() > Recover ;// list of Recover funcs .
11 vector <void ∗> check_list ; // list of vars to check
12 int resilience_type ; // CR/ Redundancy /none
13 public :
14 bool resilience_pre (){
15 if ( resilience_type == CR){
16 return checkpoint (task -> input_list );
17 }else if ( resilience_type == REDUNDANCY ){
18 return wakeup_shadow ();
19 }
20 }
21 result_t∗ resilience_post (){
22 result_t ∗result ;
23 if ( resilience_type == REDUNDANCY )
24 sleep_shadow ();
25
26 result = check_all ( check_list );
27 if (result -> status == FAIL){ // failed check
28 result = recover_all (result -> failed_list );
29 if (result -> status == FAIL) // failed recovery
30 put_tasks (result -> failed_list );
31 }
32 return result ;
33 }
34 run (){ task ->run (); }
35 };

Figure 4.7: Resilient Task Class

multiplication, and matrix C is vulnerable during both. Matrix C has the longest window as it
spans from when it is populated in the first multiplication to the end of the second multiplication
where its last use occurs.

Check and Recover Methods

Huang and Abraham [67] first introduced an ABFT method for matrix operations based on
adding a checksum row and column. Suppose we want to compute C = A×B, where A is an
m× n and B is a n× p matrix. A fully checksummed matrix Afc is expanded as follows:

Afc =


a1,1 . . . a1,n a1,n+1
... . . . ...

...
am,1 . . . am,n am,n+1

am+1,1 . . . am+1,n am+1,n+1


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1 bool task_run (){
2 this -> resilience_pre ();
3 this ->run ();
4 result_t ∗result = this -> resilience_post ();
5 return result -> status ;
6 }

Figure 4.8: Resilient Task Skeleton

Load(A);
Load(B);         
mmult(A,B,C);    

Load(D);
mmult(C,D,E);    

Store E;

A

B

C

D

E

Figure 4.9: Sequentially composed matrix multiplication and the range of live variable

Elements in the last column are the checksums of each row and the elements in the last
row are the checksums of each column. Should a soft error strike an element, it can be both
detected and corrected. Similarly, a fully checksummed matrix can be created for B. Moreover,
multiplying Afc (without last column) by Bfc (without last row) results in Cfc. The result
Cfc is also a fully checksummed matrix. The checksum property can be verified on matrices to
detect and correct errors. With these checksums, single errors can be successfully detected and
corrected. However, more than one error cannot be deterministically corrected [67].

In the next two sections we provide pragma-based and task-based solutions for sequentially
composed matrix multiplication (A×B ×D). The pragma-based approach stores per matrix
checksums and uses OpenMP parallelism. The task-based approach computes per block checksums
and is implemented using POSIX threads.

Pragma Expansion

We next present our end-to-end resilience approach for sequentially composed matrix multi-
plication for the pragma approach. Fig. 4.10 depicts the code for matrix multiplication with
pragmas. There are three regions: computing the first multiplication, the second multiplication,
and storing the results. Each region is highlighted with a pragma with check/recover methods
on the inputs of subsequent computations. For example, consider mmult(A,B,C), which takes A
and B as inputs and calculates C (OpenMP parallelism). The Check function is parameterized
with both checkers. There are two ways to recover A (or B): through checksum-based correction,
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or by loading A (or B) from non-volatile storage. The recovery procedure first attempts to
Correct(A); and if that fails, it will again (load(A)) from storage.

1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 # pragma protect Check ( Checker (A),Checker (B)) \
5 Recover ( Correct (A),Load(A), \
6 Correct (B),Load(B)) \
7 Continue
8
9 mmult (A,B,C); // OpenMP threads
10 Load(D);
11 # pragma protect Check ( Checker (C),Checker (D)) \
12 Recover ( Correct (C),Correct (D), \
13 Load(D)) Continue
14 mmult (C,D,E); // OpenMP threads
15 # pragma protect Check ( Checker (E)) \
16 Recover ( Correct (E))
17 Store (E);

Figure 4.10: Sequentially composed matrix multiplication with resilience pragma

Since C is live between the first and second pragmas, the keyword Continue is used in the
first pragma. The same applies to matrix E in the second pragma.

This information is summarized in Table 4.1, where each pragma is numbered by the
corresponding (sequential) region. The input variable(s) of each region are shown along with
their corresponding Check and Recover methods. Note that matrix C can be recomputed using
the code in region 0. Hence, another way to recover C is through executing region 0. Similarly,
E can be recalculated via region 1. Thus, we chain two regions of code.

Table 4.1: Compiler-derived resilience information for sequentially composed matrix multiplica-
tion

Region Variable
Name

Check
method

Recover method

0 A Checker(A) Correct(A), Load(A)
B Checker(B) Correct(B), Load(B)

1 C Checker(C) Correct(C), Region(1)
D Checker(D) Correct(D), Load(D)

2 E Checker(E) Correct(E), Region(2)

Fig. 4.11 depicts the final code. Every region is transformed into a while loop with checks
after the computation. Lines 8 to 19 represent region 0. Since there exist two variables that need
to be checked, a boolean array of size 2 is defined. After mmult(A,B,D), in the loop, the Check
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(function pointer) is always called and the Recover (function pointer) is called if the check fails.
If the recovery fails, we do not have any other means to recover since we tried both methods,
Correct(A) and Load(A).

A boolean array of size 3 named completed is maintained for the 3 chained regions in this
code, which indicates the correct completion of regions 0, 1, and 2. At the end of region 0/1/2,
the corresponding flag is set (lines 21, 38, and 50).

The chaining shown in Table 4.1 is realized through the highlighted lines of code. If
Recover(C) at line 29 fails, then the flag for region 0 will reset so that the computation
of that region is repeated (similarly, for E in line 45).

Task-Based Matrix Multiply

We further devised a resilience-aware tasking system (see task-based resilience class/capabilities
in Section 4.4.2) combined with a task-based runtime system and then implemented a blocked
matrix multiplication on top of it that utilizes POSIX threads. We add checksums per block of
a matrix. The checksum elements are colored in the 2 examples of Fig. 4.12. For a matrix of size
4× 4, if the block size k is 2, then 20 extra elements are needed to hold the checksums. For a
6× 6 matrix, 45 extra elements are needed. In practice, the size of a block (configured to fit into
L1 cache with other data) is much larger than the extra space overhead for checksums.

Fig. 4.13 depicts an error scenario on the left and the recomputation performed after
correcting the error. On the left side, an error in matrix A is shown in red. This error is
propagated to the second row of C during the matrix multiplication (C = A×B). Using per
block checksums, we can correct the error in A. Next, parts of C needs to be recalculated. Parts
of A and B involved in this computation are shown in green on the right side. In this case, we
need to repeat 4 block multiplications, while in per matrix case, 8 blocks of multiplication are
required (to create whole C matrix). Thus, per block checksums result in faster recovery as the
recovery is of O(N2), instead of O(N3).

4.5.2 Experimental Results for Matrix Multiply

All experiments were conducted on a cluster of 108 nodes, each with two AMD Opteron 6128
processors (16 cores total) and 32GB RAM running CentOS 5.5, Linux kernel 2.6.32 and Open
MPI 1.6.1.

We use 5 input sizes for square matrices from 512× 512 to 2560× 2560. The size of last level
cache (L3) is 12MB, and only the first experiment (N = 512) completely fits in the L3 data
cache. Thus, data is repeatedly loaded from main memory (DRAM) in all other experiments.
We use 16 OpenMP threads that perform matrix multiplications in a blocked manner with a
tile/block size of 32× 32. Each thread needs 3 blocks to perform the multiplication. Thus, the
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1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 bool completed [3]={ false };
5 while (! completed [2]){
6 while (! completed [1]){
7 while (! completed [0]){
8 bool check [2]; //2 check flags
9 do{
10 mmult (A,B,C); // OpenMP threads
11 if (!( check [0] = Check (A)))
12 if (! Recover (A)){ // Correct (A)/Load(A)
13 throw unrecoverable ;
14 }
15 if (!( check [1] = Check (B)))
16 if (! Recover (B)){ // Correct (B)/Load(B)
17 throw unrecoverable ;
18 }
19 } while (! check [0] || ! check [1]);
20 if ( check [0] && check [1])
21 completed [0]= true;
22 }
23 Load(D);
24 bool check [2]; // 2 check flags
25 do{
26 mmult (C,D,E); // OpenMP threads
27 if (!( check [0] = Check (C)))
28 if (! Recover (C)){ // Correct (C)
29 completed [0]= false ;
30 break ;
31 }
32 if (!( check [1] = Check (D)))
33 if (! Recover (D)){ // Correct (D)/Load(D)
34 throw unrecoverable ;
35 }
36 } while (! check [0] || ! check [1]);
37 if ( check [0] && check [1])
38 completed [1]= true;
39 }
40 bool check [1]; // 1 check flag
41 do{
42 store (E);
43 if (!( check [0] = Check (E)))
44 if (!( Recover (E))){ // Correct (E)
45 completed [1]= false ;
46 break ;
47 }
48 } while (! check [0]);
49 if ( check [0])
50 completed [2] = true;
51 }

Figure 4.11: Code generated from pragmas with end-to-end resilience for sequentially composed
matrix multiplication (mmult is parallelized with OpenMP)
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6	x	6

Figure 4.12: Examples of per block checksums for task-based approach. Different matrices:
4× 4 and 6× 6 with blocks of size 2× 2 and checksums per block shown in blue.
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Figure 4.13: An error scenario in A propagated in C after C = A×B (left). Recocomputation
as a part of the correction process is shown on the right side.

block size is selected as number of elements that can be accommodated in 1
4th of the L1 data

cache size (L1 is 64KB).
Table 4.2 depicts the overhead of basic resilience operations for a blocked matrix multiply

under OpenMP: Checksum, Checker, and Correct. Checksum calculates the checksum value
over the rows and columns of a given matrix. Checker calculates the checksum value for every
row and compares it with the saved checksum. Correct is called when a check fails over a given
row. It calculates the checksums over the columns to pinpoint the faulty element and corrects
its value. Next, we present the overhead of these three resilience operations.

The time spent on computing checksums for an entire matrix (for pragma-based) changes from
0.007 to 0.19 seconds, which accounts for 0.62% to 0.06% of total application time (overhead).
The checking time increases from 0.002 to 0.05 seconds while the overhead decreases from 0.17%
to 0.01% when increasing the input size. The correction time increases from 0.005 to 0.23 seconds
while the overhead decreases from 0.44% to 0.07% when increasing the input size.
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The Check operation benefits from spatial locality (row-wise calculation) while the Correct

operates on columns and does not benefit from caching. The gap between check and correct
overhead becomes larger as we increase the input size.

In contrast, the checksum overhead per block (for task-based) is higher at 9.08% to 4.96%,
and so is the checking cost for larger matrices (up to 0.57%) while checking smaller matrices
results in less overhead (down to 0.23%). Correction on per-block basis is always considerable
cheaper (0.0113%-0.0002%).

Next, we evaluate the space overhead due to checksums. The matrices’ elements are double-
precision floating-points. The size of extra elements per matrix can be calculated as

(n+ 1)2 − n2 = 2× n+ 1,
which is of linear complexity. Fig. 4.14 depicts the space overhead. When using per-matrix
checksums, the extra space for an input size of 512× 512 is 40KB, which constitutes for 0.39%
of all data. For an input size of 2560× 2560, it is 200KB, which is equivalent to 0.07% space
overhead. The overhead (both time and space) proportionally decreases when the input size is
increased. This property makes these checksums a viable approach for resilience at large scale.

In task-based version, for an arbitrary block size of k, number of checksum elements is:
Countchecksum = (n+ n

k )2 − n2 = n2

k2 + 2× n
k

The second bar in Fig. 4.14 depicts the space required to accommodate the five matrices (A,
B, C, D, E) with end-to-end task-based resilience relative to no resilience. Here, the overhead
remains constant at 6.34% when the matrix sizes increase.

Table 4.2: Time overhead of basic resilience operations on the whole matrix: Checksum, Check,
Correct for square matrices of different sizes from 512× 512 to 2560× 2560.

Per matrix checksum Per block checksum
size Checksum Check Correct Checksum Check Correct
512 0.62% 0.17% 0.44% 9.08% 0.23% 0.0113%
1024 0.17% 0.06% 0.18% 7.1% 0.37% 0.0023%
1536 0.15% 0.04% 0.17% 5.88% 0.46% 0.0008%
2048 0.06% 0.02% 0.08% 5.02% 0.51% 0.0004%
2560 0.06% 0.01% 0.07% 4.96% 0.57% 0.0002%

Fig. 4.15 contrasts the performance evaluation of sequentially composed matrix multiplication
without resilience (left bar) with our end-to-end resilience (right bar). For the pragma-based
solution (left half), fault-free execution changes from 1.14 (n = 512) to 42.11 seconds (n = 2560)
when no correction needs to be triggered. In this case, end-to-end resilience has a 16% overhead
at n = 512; for larger matrix sizes, this overhead is negligible (around 5%). Task-based execution
(right half) results in slightly higher execution times and overheads between 6.3% and 15.71%.
This can be attributed to scheduling and synchronization overhead, where the latter is required
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Figure 4.14: Space overhead of end-to-end resilience due to checksum for square matrices of
different sizes from 512× 512 to 2560× 2560.

to establish task dependencies: A latter task may only start after its inputs become available,
which are produced as outputs of a prior task. Such dependencies are enforced through lock-based
synchronization by the tasking runtime systems.
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Performance under Faults and Resulting Failures

We next investigate the correlation between LVF and the likelihood of failures in matrices. The
LVF can be computed from the vulnerability window of data structures (see Section 4.2.2).
Fig. 4.16 depicts the LVF of each matrix under the failure-free execution of the application. The
vulnerability size is 50.03MB and the vulnerability window depends on the live range of each
matrix. C has the highest LVF, next comes E and then A. B and D have the same LVF, the
smallest among the 5 matrices. This reflects the live ranges of the respective data structures
during program execution.
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Figure 4.16: Live Vulnerability Factor

We also developed a model based on the actual runtime results to study the effect of fault
injections in the system. Our simulation program uniformly injects faults across all data (all 5
matrices, each sized at 2560× 2560).

We randomly inject faults during runtime based on different fault rates (λ)from 1 per
25 seconds to 1 per 45 seconds using a uniform distribution. We compare the robustness of
ABFT (see Fig. 4.17) with our end-to-end resilience. We capture the result of fault injections by
assigning the number of errors that were detected-corrected, undetected, and those faults that
cause no error. Fig. 4.18 depicts the ABFT results where the matrix calculations are parallelized
with OpenMP threads. We see that ABFT mostly but not always protects C and E (except
one case in λ = 1

25). However, since no checks are performed on the inputs, those errors remain
undetected and, hence, result in incorrect final outputs (failure cases).
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1 Matrix A, B, C, D, E;
2 Load(A);
3 Load(B);
4 mmult (A,B,C);
5 if (! Check (C))
6 if (! Recover (C))
7 throw unrecoverable ;
8 Load(D);
9 mmult (C,D,E)
10 if (! Check (E))
11 if (! Recover (E))
12 throw unrecoverable ;

Figure 4.17: Sequentially composed matrix multiplication with ABFT
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Figure 4.18: ABFT with fault injection

Fig. 4.19 depicts different fault injection scenarios for pragma-based execution. The y axis
shows the number of faults. For end-to-end resilience, some of the faults result in detectable
errors that are all subsequently corrected by end-to-end resilience (i.e., they hit the data when
its live), depicted as the lower part of the stacked bar. Others do not result in failure as they hit
stale data (depicted by the upper portion of each bar). In other words, end-to-end resilience
never resulted in erroneous results. Furthermore, the distribution of corrected inject counts
over matrices loosely resemble the distribution of the LVF across matrices in Fig. 4.21. This is
significant as injection experiments and LVF analysis thus validate each other. Slight differences
can be attributed to the fact the LVF is based on failure-free execution while Fig. 4.19 is based on
repeated executions for some corrections for certain detected errors (e.g., in the input matrices).

Without end-to-end resilience, many errors would remain undetected, even if the checksum-
based ABFT version of matrix multiply were utilized, since inputs A, B, and D remain unchecked,
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Figure 4.19: Fault injection scenario with different fault rates (λ per seconds) over 100 simulated
runs (pragma-based)

and the result of the first multiply, C, also remains unchecked in the second multiply. Furthermore,
faults in any input matrix may cause many errors in the result matrix, which cannot be repaired.

Fig. 4.20 depicts the corresponding results for task-based end-to-end resilience. We observe
a similar distribution across matrices to Fig. 4.19, yet the number of faults in slightly higher
since the task-based approach requires longer to execute. Consequently, more faults are injected
at the same fault rate. In order to better understand the fault behavior, we calculated the LVF
for the 5 matrices under various fault rates. Fig. 4.21 depicts the results. The first bar shows
the baseline (λ = 0). Fault injection assesses the vulnerability window of data structures, yet
only our end-to-end resilience can successfully contain the errors and produce the correct final
results.
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Figure 4.20: Fault injection scenario with different fault rates (λ per seconds) over 100 simulated
runs (task-based)
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Figure 4.21: LVF with fault injection

Fig. 4.22 depicts the average completion times after fault injection, where all faults that
resulted in an error were detected and corrected by end-to-end resilience. The pragma-based
approach (left half) resulted in 20%-51% overhead for fault rate from 1 per 45 seconds to 1 per
25 seconds. Notice that such a high fault rate results in one or more faults per execution, some
of which result in detectable errors that are subsequently corrected at the expense of executing
recovery code. For the task-based approach, the overhead ranged from 7.25%-30.60%, which
is noticeably lower than pragma-based since the former requires corrections of entire matrices
while the latter can more frequently correct values locally within a block.
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Figure 4.22: Completion time under fault injection scenario with different fault rates (λ per
seconds) over 100 simulated runs
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4.5.3 TF-IDF

We further assessed the resilience capabilities for an MPI-based benchmark. We ported a term
frequency/inverse document frequency (TF-IDF) benchmark for document clustering based on
prior work [135]. TF-IDF is a classification technique designed to distinguish important terms
in a large collection of text documents, which is the basis for page ranking with applications in
data mining and search engines. The classification is broken into two steps. (1) TF calculates
the frequency of a term on a per document basis. (2) DF counts the number of occurrences of
a given term (document frequency). The final result is tfidf = TF × log N

DF . Note that TF is
a local computation while DF is global across all documents. As a result, the DFs need to be
aggregated.

Fig. 4.23 depicts the steps in the TF-IDF benchmark. At first, the names of files are loaded.
Then the term frequency (TF) method is called with filenames as input and tfs as output.
Next, the document frequency (DF) is called with tfs as input and dfs as output. Finally, the
tfidf value is computed for every term with a TFIDF call with tfs and dfs as input parameters.
Fig. 4.23 also depicts the vulnerability windows (live ranges) of variables shown by the arrows
on the right. The DF method contains MPI communication for the aggregation of document
frequencies across all MPI ranks.

Load(filenames);
TF(filenmaes,tfs);         

DF(tfs,dfs);    

TFIDF(tfs,dfs);

filenames

tfs

dfs

Figure 4.23: Vulnerability windows in TF-IDF

Check and Recover Methods

TF-IDF does not have any check provided by the algorithm. Thus, we compute a SHA-1 hash
over the data as the checksum. To demonstrate the capabilities of end-to-end resilience, we use
a combination of redundancy and CR in this case study. CR provides a restore function, which
we use as a recovery method.
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Pragma Expansion

End-to-end resilience for TF-IDF can be provided by augmenting the code with three pragmas
over as many regions (see Fig. 4.24). The first region is executed under redundancy while the
second region is protected with CR. The data of tfs is live across all three regions, while dfs

is live across the last two pragma regions (Continue keyword). Inside the DF method, MPI
communication is used and, consequently, the Comm keyword is added to the second pragma.
Table 4.3 depicts the regions, the input variable(s) to each region and the check and recover
method per variable. Note that tfs is still live in region 2. Thus, no check should be carried on
tfs in region 1. Thus, region 1 does not have check/recover methods. The chaining of regions is
also shown in Table 4.3. In region 2, tfs can be recovered by recomputing region 0. Similarly,
dfs can be calculated from region 1.

Table 4.3: Compiler-derived resilience information for TF-IDF

Region Variable
Name

Check
method

Recover
method

0 fn Checker(fn) Load(fn)
1 tfs – –

2 tfs Checker(tfs) Recover(tfs),
Region(0)

dfs Checker(dfs) Region(1)

1 vector <string > filenames ;// input
2 vector < Dictionary > tfs; // output of Region 1
3 map <string ,int > dfs; // output of Region 2
4
5 Load( filenames );
6 # pragma protect Redundancy Check ( Checker ( filenames ))\
7 Recover (Load( filenames )) \
8 Continue
9 TF(filenames , tfs);
10 # pragma protect CR Check ( Checker (tfs)) Comm Continue
11 DF(tfs , dfs); // contains MPI calls
12 # pragma protect Check ( Checker (tfs), Checker (dfs))
13 TFIDF (tfs ,dfs);

Figure 4.24: TF-IDF with resilience pragma

Fig. 4.25 depicts the final code. Since there are three chainings, a boolean array of size 3 is
defined to show the completion of regions. The code related to chaining is highlighted.
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1 MPI_Init ();
2 Init (); // creates a shadow process
3 // sets the communicator ,âĂę
4 vector <string > filenames ;// input
5 vector < Dictionary > tfs; // output of Region 0
6 map <string ,int > dfs;// output of Region 1
7 Load( filenames );
8 bool completed [3]={ false };
9 while (! completed [2]){
10 while (! completed [1]){
11 while (! completed [0]){
12 wake_up_shadow (); // primary wakes up shadow
13 bool check [1]; // 1 check flag
14 do{
15 TF(filenames , tfs);
16 if (!( check [0] = Check ( filenames )))
17 if (! Recover ( filenames ))
18 throw unrecoverable ;
19 } while (! check [0]);
20 sleep_shadow ();// primary puts shadow to sleep
21 if ( check [0])
22 completed [0]= true;
23 }
24 Create_ckpt (tfs); // checkpoint "tfs"
25 DF(tfs , dfs); // contains MPI calls
26 if (1)
27 completed [1]= true;
28 }
29 bool check [2]; // 2 check flags
30 do{
31 TFIDF (tfs ,dfs);
32 if (!( check [0] = Check (tfs)))
33 if (!( Recover (tfs))){
34 completed [0]= false ;// recompute region 0
35 break ;
36 }
37 if (!( check [1] = Check (dfs)))
38 if (1){
39 completed [1]= false ;// recompute region 1
40 break ;
41 }
42 } while (! check [0] && ! check [1]);
43 if ( check [0] && check [1])
44 completed [2] = true;
45 }
46 Fin (); // finalizes the shadow process
47 MPI_Finalize ();

Figure 4.25: Code generated with end-to-end resilience for TF-IDF
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Region 0 extends from line 12 to 20, where the shadow rank is signaled to engage in redundant
execution. Lines 24 to 25 comprise region 1, and the final region is represented by lines 29 to 42.

4.5.4 Experimental Results of TF-IDF

We used 750 text books with a total size of 500MB for the TF-IDF benchmark with 4 MPI ranks.
We performed the evaluation with 4 input sizes: 125MB, 250MB, 375MB, and 500MB. Table 4.4
shows the overhead of different resilience operations. Checksum(fn) and Check(fn) each take
between 0.8ms to 20ms when increasing the input size from 125MB to 500MB. This corresponds
to an overhead of 0.008% to 0.005%. A load(fn) includes reading the input directory structure
to find filenames and takes between 0.047 (0.47%) to 0.19 seconds (0.5% overhead) for input
sizes from 125MB to 500MB.

The tfs values are calculated on a per-file basis. Notice that checksum(tfs) computes
the SHA-1 hash over the tfs of every file. This allows us to perform fine-grained checks and,
hence, much faster recovery. Calls to ckecksum(tfs) take between 0.54 (5.46% overhead) and
2.38 seconds (6.19% overhead). The check(tfs) call computes a SHA-1 hash over the data
and compares it with the in-memory stored checksum. It takes between 0.6 (6% overhead) and
2.56 seconds (6.65% overhead). The recovery for tfs includes restoring the values from the
previous checkpoint. As the check is performed per file, recovery is fast and takes around 7.4
micro seconds on average. Note that this is independent of the input size. The last two rows
in Table 4.4 depict overheads for checksum(dfs) and check(dfs), which range from 1.19% to
0.73% when increasing the input size from 125MB to 500MB, respectively.

Table 4.4: Time overhead (%) of basic resilience operations in TF-IDF: Checksum, Check,
Recover (for 4 MPI ranks)

125MB 250MB 375MB 500MB
checksum(fn) 0.008% 0.006% 0.005% 0.005%
check(fn) 0.008% 0.006% 0.005% 0.005%
load(fn) 0.48% 0.47% 0.46% 0.50%
checksum(tfs) 5.46% 5.75% 5.92% 6.19%
check(tfs) 6.09% 6.43% 6.28% 6.66%
restore(tfs) 7.52E-05% 3.64E-05% 2.30E-05% 1.79E-05%
checksum(dfs) 1.19% 0.95% 0.8% 0.73%
check(dfs) 1.13% 0.90% 0.75% 0.73%

Fig. 4.26 depicts the time for failure-free execution of TF-IDF without resilience and compares
that to our end-to-end resilience. The overhead increases from 14% for an input size of 125MB
to 16.2% for 500MB. Although we used SHA-1 hash as the checksum values over the data, the
overhead is still small considering the benefits of end-to-end resilience provided by our approach.
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Figure 4.26: Failure-free execution time of TF-IDF: without resilience vs. end-to-end resilience
(for 4 MPI ranks)

4.6 Conclusion

In this chapter, we proposed an automatic approach for building highly modular and resilient
applications such that resilience concerns are separated from algorithms. Our approach requires
a minimal effort by application programmers and is highly portable.

We introduced and investigated the significance of the live vulnerability factor, which takes
into account the live range of a data structure and its storage space to provide insight into
the likelihood of failures. We introduced an effective set of building blocks for detection and
correction of soft errors through Check and Recover methods for arbitrary data structures.
We provided two approaches, pragma- and task-based, to implement end-to-end resilience.
We demonstrated the effectiveness of end-to-end resilience for sequentially composed matrix
multiplications and TF-IDF under failure-free execution and fault scenarios.
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Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this section, we summarize our efforts and present conclusions drawn from this research.
Chapter 2 details the shortcomings in the software stack for Xeon Phi manycore processors

and presents our innovations in this area. We propose Snapify, an application-transparent,
coordinated approach to take consistent snapshots of host and coprocessor processes of an offload
application. We then use Snapify to implement three new capabilities for offload applications:
application-transparent checkpoint and restart, process migration, and process swapping. To the
best of our knowledge, this is the first work that provides such capabilities for offload applications
on the Xeon Phi. In order to transfer the snapshots in a high performance fashion, we propose
a fast, remote file access service based on RDMA that speeds up the storage and retrieval of
snapshots from the host’s file system. We further evaluate Snapify on several OpenMP and MPI
benchmarks. Our results show that Snapify imposes negligible overhead in normal execution
of offload applications (less than 5%), and the overheads due to the capture of snapshots in
checkpoint and restart, process swap, and process migration are small enough to make it practical
to use Snapify for a variety of offload applications

Chapter 3 details shortcomings in redundant computing and presents our innovations in
replenishing failed replica processes. We devise a generic high performance node cloning service
under divergent node execution (DINO) for recovery. DINO clones a process onto a spare node in
a live fashion. We integrate DINO into the MPI runtime under redundancy as a reactive method
that is triggered by the MPI runtime to forward recover from hard errors, e.g., a node crash or
other hardware failures. Next, we propose a novel Quiesce algorithm to overcome divergence in
execution without excessive message logging. Execution of replicas is not in a lock-step fashion,
i.e., can diverge. Our approach establishes consistency through a novel, scalable multicast variant
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of the traditional (non-scalable) bookmark protocol [108] and resolves inconsistencies through
exploiting the symmetry property of redundant computing. To evaluate this work, we use the
NAS parallel benchmark suite besides Sweep3D and LULESH. We use kernels from BT, CG, FT,
IS, LU, MG, SP, and LU to evaluate our implementation. The time to regain dual redundancy
after a hard error varies from 5.60 seconds to 90.48 seconds depending on process image size and
cross-node transfer bandwidth, which is short enough to make our approach practical. In order
to better understand the performance of redundant computing at a very large scale, we provide
a model with low error (at most 6%). Our model estimates job execution time under redundancy.
We validate our model on the Stampede supercomputer and extrapolate results under this
model to extreme scale with a node MTTF of 50 years and show that dual redundancy+cloning
outperforms triple redundancy within the exascale node count range, yet at 33% lower power
and compute requirements.

Chapter 4 presents our efforts in providing an infrastructure that allows for computation with
end-to-end resilience across an entire application run that requires minimal programming effort
while providing maximal code modularity. We present a systematic approach for end-to-end
resilience with minimal assistance from the application developer. We separate the resilience
aspects from the algorithmic side of computation aiming for portability and modularity of HPC
codes. In end-to-end resilience, checks and appropriate recovery methods are automatically
inserted into the application source code and a computationally equivalent code is generated that
is fault resilient. In case studies, we demonstrate the applicability of our approach and its benefit
over conventional resilience techniques. We show that the overhead for check/recover methods
in a sequentially composed numeric kernel is negligible while the overall space overhead is less
than 1% for per matrix checksums and less than 7% for per-block checksums. Our experimental
results show that check/recover methods in a code that combines MPI with end-to-end resilience
results in less than 7% overhead or an overall overhead of 14 - 16% compared to a baseline
without resilience.

5.2 Future Work

In this section, we present future research directions.

• Task scheduling is one of the oldest concepts in computing systems and has been extensively
studied for multi-cores. The base idea is to assign resources to tasks until they complete.
Multiple metrics have been taken into account to assess the performance of schedulers, e.g.,
maximizing throughput, minimizing response time (or latency), guaranteeing deadlines,
and maximizing fairness. Almost all of these metrics are performance-driven. A Directed
Acyclic Graph (DAG) is a generic model of a parallel program consisting of a set of tasks
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and their dependencies. A scheduler could traverse the DAG with a depth-first or breadth-
first policy or a combination or them. Generally, a high performance scheduler traverses a
DAG in a way to minimize memory demands and cross-thread communication. Depth-
first best exploits the cache locality and reduces memory demands, while breadth-first
maximizes parallelism assuming an infinite number of available physical cores. Breadth-first
scheduling has the potential to lengthen the vulnerability window if it triggers new loads.
As an example, consider a wide DAG where in the top level tasks some arbitrary data
are loaded. In a breadth-first scheduling, after the execution of the first level of tasks, all
of the data is live and vulnerable. Work stealing is a scheduling strategy where a thread
grabs a task from the bottom of another thread’s work stack (the oldest task). Multiple
scenarios could occur with regard to the vulnerability window. It can potentially shrink
the window if data is no longer needed beyond the "stolen" task. If it triggers new loads,
the actual impact depends on the subsequent actions, i.e., how long it will be queued until
next execution. We want to investigate the effects of scheduling policies on the liveness
and further design a data-centric resilience-aware task scheduling system based on the
our recent work. Such a system should provide a performance boost while improving the
vulnerability window, and hence, increases resilience.

• Multiple metrics are commonly used to evaluate the failure of systems. The Failures in
Time (FIT) rate is defined as a failure rate of 1 per billion hours. FIT is inverse proportional
to MTBF (Mean Time Between Failures). The Architectural Vulnerability Factor (AVF)
is the probability that a fault (in architecture) leads to a failure (in the program), defined
over the fraction of time that data is vulnerable. The Program Vulnerability Factor (PVF)
allows insight into the vulnerability of a software resource with respect to hardware faults
in a micro-architecture independent way by providing a comparison among programs with
relative reliability. The Data Vulnerability Factor (DVF) considers data spaces and the
fraction of time that a fault in data will result in a failure. DVF takes into account the
number of accesses as a contributor to fault occurrence. One common problem in these
metrics is that they are abstract numbers that only capture a high-level aspect of the
system and do not capture the details of recent trends in architecture. Recent innovations in
hardware, such as deep memory hierarchies and heterogeneous cores, provide a performance
boost at the price of adding to system complexity. Persistent memory technologies like
Phase Change Memory (PCM), magnetic RAM (MRAM), and Memristors are positioned
to be placed as burst buffers between DRAM and storage to alleviate the speed gap
using a non-volatile abstraction. Thus, a comprehensive resilience metric that captures
the architectural properties of all layers of a system is missing. The fault propagation
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probability is another aspect of a deep memory hierarchy that should be captured by such
metric.
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